Another second order non homogeneous ODE....

Click For Summary
SUMMARY

The forum discussion focuses on solving a second-order non-homogeneous ordinary differential equation (ODE) given by $\displaystyle y^{\ ''} - \frac{2+x}{x}\ y^{\ ’} + \frac{2+x}{x^{2}}\ y = x\ e^{x}$. The solution involves finding the general solution of the associated homogeneous equation, leading to independent solutions $u = x e^{x}$ and $v = x$. The particular solution is derived using the method of variation of parameters, resulting in the complete solution $\displaystyle y(x) = c_{1} x e^{x} + c_{2} x + x^{2} e^{x} + x \ln \frac{1}{|x|}$. The discussion also outlines a general procedure for solving second-order linear ODEs with variable coefficients.

PREREQUISITES
  • Understanding of second-order linear ordinary differential equations (ODEs)
  • Familiarity with the method of variation of parameters
  • Knowledge of Wronskian determinants in the context of ODEs
  • Basic integration techniques, including integration by parts
NEXT STEPS
  • Study the method of variation of parameters in detail
  • Learn about Wronskian determinants and their applications in ODEs
  • Explore examples of second-order linear ODEs with variable coefficients
  • Investigate series solutions for ODEs, particularly near singular points
USEFUL FOR

Mathematicians, students studying differential equations, and anyone interested in advanced methods for solving ordinary differential equations.

chisigma
Gold Member
MHB
Messages
1,627
Reaction score
0
Four days ago on mathhelpforum.com the user ssh [I don’t know if he the same as in MHB…] has proposed the following second order complete linear ODE…

$\displaystyle y^{\ ''} – \frac{2+x}{x}\ y^{\ ’}\ + \frac{2+x}{x^{2}}\ y = x\ e^{x}$ (1)

… and till now no satisfactory solution has been supplied. Well!... now we have the opportunity to test the procedure described in…

http://www.mathhelpboards.com/f17/how-solve-differential-equation-second-order-linear-variable-coefficient-2089/index2.html

The first step is to find the general solution of the incomplete ODE...

$\displaystyle y^{\ ''} – \frac{2+x}{x}\ y^{\ ’}\ + \frac{2+x}{x^{2}}\ y = 0$ (2)

If u and v are two independent solution of (2) then we arrive to write...

$\displaystyle (v\ u^{\ ''} - u\ v^{\ ''}) = \frac{2+x}{x}\ (v\ u^{\ '} - u\ v^{\ '})$ (3)

... and setting $z= v\ u^{\ '} - u\ v^{\ '}$ we obtain the first order ODE...

$\displaystyle z^{\ '}= \frac{2+x}{x}\ z$ (4)

... one solution of which is $\displaystyle z=x^{2}\ e^{x}$, so that is...

$\displaystyle \frac{z}{v^{2}} = \frac{d}{d x} (\frac{u}{v}) = \frac{x^{2}\ e^{x}}{v^{2}} \implies u= v\ \int \frac{x^{2}\ e^{x}}{v^{2}}\ dx$ (5)

It is easy enough to see that $v=x$ is solution of (2) so that…

$\displaystyle u= x\ \int e^{x}\ dx = x\ e^{x}$ (6)

Now that we have u and v we have to find the particular solution of (1) in the form...

$\displaystyle Y= C_{1}(x)\ u + C_{2} (x)\ v$ (7)

... where...

$\displaystyle C_{1}(x) = - \int \frac{ v\ \varphi(x)}{W_{u,v}(x)}\ dx$

$\displaystyle C_{2}(x) = \int \frac{ u\ \varphi(x)}{W_{u,v}(x)}\ dx$ (8)

The Wronskian is computed as $\displaystyle W_{u,v} (x)= u\ v^{\ '}-v\ u^{\ '} = - x^{2}\ e^{x}$ and is $\displaystyle \varphi(x)= x\ e^{x}$ so that we obtain...

$\displaystyle C_{1}(x)= \int dx = x$

$\displaystyle C_{2}(x)= - \int \frac{d x}{x}= \ln \frac{1}{|x|}$ (9)

... and the general solution of (1) is...

$\displaystyle y(x)= c_{1}\ x\ e^{x} + c_{2}\ x + x^{2}\ e^{x} + x\ \ln \frac{1}{|x|}$ (10)

Kind regards

$\chi$ $\sigma$
 
Physics news on Phys.org
For completeness sake now we describe the general solving procedure of an ODE of the type...

$\displaystyle y^{\ ''} + p(x)\ y^{\ ’}\ + q(x)\ y = \varphi(x)$ (1)

The first step is to find the general solution of the incomplete ODE...

$\displaystyle y^{\ ''} + p(x)\ y^{\ ’}\ + q(x)\ y = 0$ (2)... which can be written as... $y(x)= c_{1}\ u(x) + c_{2}\ v(x)$ (3)... where u(*) and v(*) are two independent solutions of (2), $c_{1}$ and $c_{2}$ are constants. If u and v are both solution of (2) then ...

$\displaystyle u^{\ ''} + p(x)\ u^{\ ’}\ + q(x)\ u = 0$

$\displaystyle v^{\ ''} + p(x)\ v^{\ ’}\ + q(x)\ v = 0$ (4)

Multiplying the first of the (4) by v, the second by u and subtracting is...

$\displaystyle (v\ u^{\ ''} - u\ v^{\ ''}) = - p(x)\ (v\ u^{\ '} - u\ v^{\ '})$ (5)

... and setting $z= v\ u^{\ '} - u\ v^{\ '}$ we obtain the first order ODE...

$\displaystyle z^{\ '}= - p(x)\ z$ (6)

... one solution of which is $\displaystyle z = e^{- \int p(x)\ dx}$, so that is...

$\displaystyle \frac{d}{d x} (\frac{u}{v}) = \frac{z}{v^{2}} \implies u= v\ \int \frac{z}{v^{2}}\ dx$ (7)

... and the (7) allows to obtain, if we are able to find a solution v of (2), another solution u independent from it.

Now that we have u and v we have to find the particular solution of (1) in the form...

$\displaystyle Y= C_{1}(x)\ u + C_{2} (x)\ v$ (8)

... where...

$\displaystyle C_{1}(x) = - \int \frac{ v\ \varphi(x)}{W_{u,v}(x)}\ dx$

$\displaystyle C_{2}(x) = \int \frac{ u\ \varphi(x)}{W_{u,v}(x)}\ dx$ (9)

... the Wronskian of u and v being...

$\displaystyle W_{u,v} (x)= u\ v^{\ '}-v\ u^{\ '}$ (9)

The general solution of (1) is...

$\displaystyle y(x)= \{c_{1} + C_{1} (x)\}\ u(x) + \{c_{2} + C_{2}(x)\}\ v(x) $ (10)

The procedure we have described permits a comfortable solution of an ODE like (1). The only 'weak point' is that it can start only if a particular solution of the incomplete ODE is known and that sometime can be an hard task...

Kind regards

$\chi$ $\sigma$
 
An interesting example of second order linear incomplete ODE can be found in mathhelpforum.com...

series solution!

The ODE is...

$\displaystyle y^{\ ''} + (1+\frac{1}{x})\ y^{\ '} - \frac{1}{x^{2}}=0$ (1)

... and for that a 'series solution' is explicity required. Applying the procedure we have described in previous post we arrive at the first order ODE...

$\displaystyle z^{\ '} = -(1+\frac{1}{x})\ z$ (2)

... one solution of which is...

$\displaystyle z= \frac{e^{-x}}{x}$ (3)

... so that if u and v are two independent solutions of (1) then is...

$\displaystyle u= v\ \int \frac{e^{-x}}{x\ v^{2}}\ dx$ (4)

Now $v= \frac{e^{-x}}{x}$ is solution of (1) so that we obtain...

$\displaystyle u= \frac{e^{-x}}{x}\ \int x\ e^{x}\ dx = \frac{x-1}{x}$ (5)... so that the general solution of (1) is...

$\displaystyle y(x)=c_{1}\ \frac{x-1}{x} + c_{2}\ \frac{e^{-x}}{x}$ (6)

Observing (6) it is obvious that any non zero solution of (1) has a singularity in x=0 and therefore the standard Mc Laurin series solution attempt necessarly fails...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
... so that the general solution of (1) is...

$\displaystyle y(x)=c_{1}\ \frac{x-1}{x} + c_{2}\ \frac{e^{-x}}{x}$ (6)

Observing (6) it is obvious that any non zero solution of (1) has a singularity in x=0 and therefore the standard Mc Laurin series solution attempt necessarly fails...

Of course that is not fully true, because in the particular case $\displaystyle c_{2}=c_{1}=c$ the series solution do exist and is...

$\displaystyle y(x)= c\ \sum_{n=1}^{\infty} (-1)^{n+1}\ \frac{x^{n}}{(n+1)!}$

In this case however is $y(0)=0$ and You can only impose a value to $y^{\ '}(0)$...

Kind regards

$\chi$ $\sigma$
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K