Another second order non homogeneous ODE....

Click For Summary

Discussion Overview

The discussion centers around the methods for solving second order non-homogeneous ordinary differential equations (ODEs), specifically focusing on the equation presented by a user on mathhelpforum.com. Participants explore the general solution of both homogeneous and non-homogeneous forms of ODEs, detailing procedures and examples.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a second order linear ODE and outlines a method to find its general solution, starting with the associated homogeneous equation.
  • Another participant elaborates on the general procedure for solving ODEs of the form given, emphasizing the need for independent solutions and the computation of the Wronskian.
  • A different example of a second order linear incomplete ODE is introduced, with a focus on deriving a series solution and noting the singularity at x=0.
  • Participants discuss the implications of singularities on the existence of series solutions, with one noting that specific conditions allow for a series solution despite the singularity.

Areas of Agreement / Disagreement

Participants generally agree on the procedures for solving ODEs, but there are differing views on the implications of singularities and the conditions under which series solutions can be valid. The discussion remains unresolved regarding the broader applicability of these methods in the presence of singularities.

Contextual Notes

Limitations include the dependence on the existence of particular solutions for the incomplete ODEs and the challenges posed by singularities in the solutions.

chisigma
Gold Member
MHB
Messages
1,627
Reaction score
0
Four days ago on mathhelpforum.com the user ssh [I don’t know if he the same as in MHB…] has proposed the following second order complete linear ODE…

$\displaystyle y^{\ ''} – \frac{2+x}{x}\ y^{\ ’}\ + \frac{2+x}{x^{2}}\ y = x\ e^{x}$ (1)

… and till now no satisfactory solution has been supplied. Well!... now we have the opportunity to test the procedure described in…

http://www.mathhelpboards.com/f17/how-solve-differential-equation-second-order-linear-variable-coefficient-2089/index2.html

The first step is to find the general solution of the incomplete ODE...

$\displaystyle y^{\ ''} – \frac{2+x}{x}\ y^{\ ’}\ + \frac{2+x}{x^{2}}\ y = 0$ (2)

If u and v are two independent solution of (2) then we arrive to write...

$\displaystyle (v\ u^{\ ''} - u\ v^{\ ''}) = \frac{2+x}{x}\ (v\ u^{\ '} - u\ v^{\ '})$ (3)

... and setting $z= v\ u^{\ '} - u\ v^{\ '}$ we obtain the first order ODE...

$\displaystyle z^{\ '}= \frac{2+x}{x}\ z$ (4)

... one solution of which is $\displaystyle z=x^{2}\ e^{x}$, so that is...

$\displaystyle \frac{z}{v^{2}} = \frac{d}{d x} (\frac{u}{v}) = \frac{x^{2}\ e^{x}}{v^{2}} \implies u= v\ \int \frac{x^{2}\ e^{x}}{v^{2}}\ dx$ (5)

It is easy enough to see that $v=x$ is solution of (2) so that…

$\displaystyle u= x\ \int e^{x}\ dx = x\ e^{x}$ (6)

Now that we have u and v we have to find the particular solution of (1) in the form...

$\displaystyle Y= C_{1}(x)\ u + C_{2} (x)\ v$ (7)

... where...

$\displaystyle C_{1}(x) = - \int \frac{ v\ \varphi(x)}{W_{u,v}(x)}\ dx$

$\displaystyle C_{2}(x) = \int \frac{ u\ \varphi(x)}{W_{u,v}(x)}\ dx$ (8)

The Wronskian is computed as $\displaystyle W_{u,v} (x)= u\ v^{\ '}-v\ u^{\ '} = - x^{2}\ e^{x}$ and is $\displaystyle \varphi(x)= x\ e^{x}$ so that we obtain...

$\displaystyle C_{1}(x)= \int dx = x$

$\displaystyle C_{2}(x)= - \int \frac{d x}{x}= \ln \frac{1}{|x|}$ (9)

... and the general solution of (1) is...

$\displaystyle y(x)= c_{1}\ x\ e^{x} + c_{2}\ x + x^{2}\ e^{x} + x\ \ln \frac{1}{|x|}$ (10)

Kind regards

$\chi$ $\sigma$
 
Physics news on Phys.org
For completeness sake now we describe the general solving procedure of an ODE of the type...

$\displaystyle y^{\ ''} + p(x)\ y^{\ ’}\ + q(x)\ y = \varphi(x)$ (1)

The first step is to find the general solution of the incomplete ODE...

$\displaystyle y^{\ ''} + p(x)\ y^{\ ’}\ + q(x)\ y = 0$ (2)... which can be written as... $y(x)= c_{1}\ u(x) + c_{2}\ v(x)$ (3)... where u(*) and v(*) are two independent solutions of (2), $c_{1}$ and $c_{2}$ are constants. If u and v are both solution of (2) then ...

$\displaystyle u^{\ ''} + p(x)\ u^{\ ’}\ + q(x)\ u = 0$

$\displaystyle v^{\ ''} + p(x)\ v^{\ ’}\ + q(x)\ v = 0$ (4)

Multiplying the first of the (4) by v, the second by u and subtracting is...

$\displaystyle (v\ u^{\ ''} - u\ v^{\ ''}) = - p(x)\ (v\ u^{\ '} - u\ v^{\ '})$ (5)

... and setting $z= v\ u^{\ '} - u\ v^{\ '}$ we obtain the first order ODE...

$\displaystyle z^{\ '}= - p(x)\ z$ (6)

... one solution of which is $\displaystyle z = e^{- \int p(x)\ dx}$, so that is...

$\displaystyle \frac{d}{d x} (\frac{u}{v}) = \frac{z}{v^{2}} \implies u= v\ \int \frac{z}{v^{2}}\ dx$ (7)

... and the (7) allows to obtain, if we are able to find a solution v of (2), another solution u independent from it.

Now that we have u and v we have to find the particular solution of (1) in the form...

$\displaystyle Y= C_{1}(x)\ u + C_{2} (x)\ v$ (8)

... where...

$\displaystyle C_{1}(x) = - \int \frac{ v\ \varphi(x)}{W_{u,v}(x)}\ dx$

$\displaystyle C_{2}(x) = \int \frac{ u\ \varphi(x)}{W_{u,v}(x)}\ dx$ (9)

... the Wronskian of u and v being...

$\displaystyle W_{u,v} (x)= u\ v^{\ '}-v\ u^{\ '}$ (9)

The general solution of (1) is...

$\displaystyle y(x)= \{c_{1} + C_{1} (x)\}\ u(x) + \{c_{2} + C_{2}(x)\}\ v(x) $ (10)

The procedure we have described permits a comfortable solution of an ODE like (1). The only 'weak point' is that it can start only if a particular solution of the incomplete ODE is known and that sometime can be an hard task...

Kind regards

$\chi$ $\sigma$
 
An interesting example of second order linear incomplete ODE can be found in mathhelpforum.com...

series solution!

The ODE is...

$\displaystyle y^{\ ''} + (1+\frac{1}{x})\ y^{\ '} - \frac{1}{x^{2}}=0$ (1)

... and for that a 'series solution' is explicity required. Applying the procedure we have described in previous post we arrive at the first order ODE...

$\displaystyle z^{\ '} = -(1+\frac{1}{x})\ z$ (2)

... one solution of which is...

$\displaystyle z= \frac{e^{-x}}{x}$ (3)

... so that if u and v are two independent solutions of (1) then is...

$\displaystyle u= v\ \int \frac{e^{-x}}{x\ v^{2}}\ dx$ (4)

Now $v= \frac{e^{-x}}{x}$ is solution of (1) so that we obtain...

$\displaystyle u= \frac{e^{-x}}{x}\ \int x\ e^{x}\ dx = \frac{x-1}{x}$ (5)... so that the general solution of (1) is...

$\displaystyle y(x)=c_{1}\ \frac{x-1}{x} + c_{2}\ \frac{e^{-x}}{x}$ (6)

Observing (6) it is obvious that any non zero solution of (1) has a singularity in x=0 and therefore the standard Mc Laurin series solution attempt necessarly fails...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
... so that the general solution of (1) is...

$\displaystyle y(x)=c_{1}\ \frac{x-1}{x} + c_{2}\ \frac{e^{-x}}{x}$ (6)

Observing (6) it is obvious that any non zero solution of (1) has a singularity in x=0 and therefore the standard Mc Laurin series solution attempt necessarly fails...

Of course that is not fully true, because in the particular case $\displaystyle c_{2}=c_{1}=c$ the series solution do exist and is...

$\displaystyle y(x)= c\ \sum_{n=1}^{\infty} (-1)^{n+1}\ \frac{x^{n}}{(n+1)!}$

In this case however is $y(0)=0$ and You can only impose a value to $y^{\ '}(0)$...

Kind regards

$\chi$ $\sigma$
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K