yungman
- 5,741
- 294
This is from Griffiths page 446.
In radiating dipoles:
V(\vec r,t)=\frac 1 {4\pi \epsilon_0} \left [ \frac {q_0 cos [\omega(t- \frac {\eta_+} c )]}{\eta_+}- \frac {q_0 cos [\omega(t- \frac {\eta_- } c)]}{\eta_-} \right ]
Given conditions d<< \eta\; and d<< \frac c {\omega} :
V_{(\eta,\theta,t)} = \frac {q_0 d cos \theta}{4\pi \epsilon_0 r} \left [ -\frac {\omega}{c} sin[\omega(t-\frac {\eta}{c}]+\frac 1 {\eta} cos[\omega(t-\frac {\eta}{c}]\right ]
But then the book claimed if \eta >> \frac c {\omega}\;, then:V_{(\eta,\theta,t)} = \frac {q_0 d cos \theta}{4\pi \epsilon_0 r} \left [ -\frac {\omega}{c} sin[ \omega(t-\frac {\eta}{c} ] \right ] = -\frac {q_0\; d\;\omega\; cos \theta}{4\pi \epsilon_0 c\; r} sin[ \omega(t-\frac {\eta}{c} ]I don't see why if \eta >> \frac c {\omega}\;, then
\frac 1 {\eta} cos[\omega(t-\frac {\eta}{c}] = 0
It look so simple but I just don't see it. Please explain to me.
Thanks
Alan
In radiating dipoles:
V(\vec r,t)=\frac 1 {4\pi \epsilon_0} \left [ \frac {q_0 cos [\omega(t- \frac {\eta_+} c )]}{\eta_+}- \frac {q_0 cos [\omega(t- \frac {\eta_- } c)]}{\eta_-} \right ]
Given conditions d<< \eta\; and d<< \frac c {\omega} :
V_{(\eta,\theta,t)} = \frac {q_0 d cos \theta}{4\pi \epsilon_0 r} \left [ -\frac {\omega}{c} sin[\omega(t-\frac {\eta}{c}]+\frac 1 {\eta} cos[\omega(t-\frac {\eta}{c}]\right ]
But then the book claimed if \eta >> \frac c {\omega}\;, then:V_{(\eta,\theta,t)} = \frac {q_0 d cos \theta}{4\pi \epsilon_0 r} \left [ -\frac {\omega}{c} sin[ \omega(t-\frac {\eta}{c} ] \right ] = -\frac {q_0\; d\;\omega\; cos \theta}{4\pi \epsilon_0 c\; r} sin[ \omega(t-\frac {\eta}{c} ]I don't see why if \eta >> \frac c {\omega}\;, then
\frac 1 {\eta} cos[\omega(t-\frac {\eta}{c}] = 0
It look so simple but I just don't see it. Please explain to me.
Thanks
Alan