Saint Brian
- 14
- 0
I have a few questions that I'd love to have someone with specific knowledge of the field to answer. Forgive my simplicity.
1. If the observable sphere of the universe is 13.5 billion light years in radius, this means that when looking at the farthest observable objects one is looking back in the past 13.5 billion years. Since we can only see that far, we say that the universe is that old and at least that large (apx 27 billion light years in diameter) and yet where are those distant objects *now* after all that time? Would they not be now located however much farther away an additional 13.5 billion years of expansion would take them? So why cannot we estimate where they are now and include this in our estimation of the 'diameter' of the universe?
2. (Don't laugh please) If the universe is expanding faster than we'd estimated and we credit this fact to the presence of a 'dark energy' that produces repulsion instead of attraction between objects provided that the objects have enough space between them, could not this 'dark energy' be analogous to something like vapor pressure, which causes a gas to expand to fill it's container? So that when the distances cause the gravitic force to be insufficient to cancel it, it takes over and causes a gas-like expansion?
I'm really sure this one is a dumb question, but what the heck.
3. If Gravity is the curvature of space-time, which I get, then why do physicists speak of it as a force and of it's speed of propagation and even of 'gravitons' or particles of gravity?
1. If the observable sphere of the universe is 13.5 billion light years in radius, this means that when looking at the farthest observable objects one is looking back in the past 13.5 billion years. Since we can only see that far, we say that the universe is that old and at least that large (apx 27 billion light years in diameter) and yet where are those distant objects *now* after all that time? Would they not be now located however much farther away an additional 13.5 billion years of expansion would take them? So why cannot we estimate where they are now and include this in our estimation of the 'diameter' of the universe?
2. (Don't laugh please) If the universe is expanding faster than we'd estimated and we credit this fact to the presence of a 'dark energy' that produces repulsion instead of attraction between objects provided that the objects have enough space between them, could not this 'dark energy' be analogous to something like vapor pressure, which causes a gas to expand to fill it's container? So that when the distances cause the gravitic force to be insufficient to cancel it, it takes over and causes a gas-like expansion?
I'm really sure this one is a dumb question, but what the heck.
3. If Gravity is the curvature of space-time, which I get, then why do physicists speak of it as a force and of it's speed of propagation and even of 'gravitons' or particles of gravity?
Last edited: