Antisymmetric 4-Tensor: Hodge/Duality Transformation Explained

  • Thread starter Thread starter yukcream
  • Start date Start date
yukcream
Messages
59
Reaction score
0
What is Hodge or duality trnsformation? I just know it is an operation to transform tensor of rank p into rank (n-p), where n is the dimension? I want to know more about it especially how it works in general relativity,can anyone give me some introductory reading for me? Thank you :rolleyes:

yukyuk
 
Physics news on Phys.org
I think the Hodge duality transformation is the most easily understood in terms of Clifford algebras.

There is some introductory reading about Clifford algebras

here

If you are already familiar with the standard vector dot products and wedge products, it should be fairly easy reading. If you are not already somewhat familiar with the wedge product, it may not be so easy.

Anyway, suppose you have three non-collinear vectors in a 4-d space (since we are talking about relativity). (Note that this collection of three vectors is really a three-form. I'm not sure if you are familiar with three-forms or not. The Clifford algebra article will describe three-forms in more detail if you are not already familiar with them).

There is one and only one vector that's orthogonal to all three vectors (the three-form) - you can think of it as the time vector that's associated with the volume element defined by the three non-collinear vectors.

We can make the length of the vector proportional to the volume of the pareallel piped spanned by the three vectors.

This vector is the "hodge dual". In the language of forms, it associates a 1-form with every three-form. (I called it a vector before, but it's not really a vector, its the dual of a vector, a 1-form).

You can do similar transformations with other n-forms.
 
Some suggestions [that worked for me].

First, recognize that the [antisymmetric] cross-product of two vectors, which is most naturally visualized as an oriented plane, can be thought of as a vector in 3-dim Euclidean space... with the help of the Hodge dual operation.

Next, study Hodge duality in electromagnetism.
For example,
http://farside.ph.utexas.edu/teaching/jk1/lectures/node22.html
http://farside.ph.utexas.edu/teaching/jk1/lectures/node23.html

I'd suggest these books:

Schouten - Tensor Analysis for Physicists


Bamberg & Sternberg - A Course in Mathematics for Students of Physics


Burke - Applied Differential Geometry


Schutz - Geometrical Methods of Mathematical Physics


In GR, the Hodge dual shows up when discussing curvature tensors.
Exercise: The Riemann curvature tensor has two pairs of antisymmetric indices. By dualizing each pair, one gets the "double-dual" of Riemann. Take its [nontrivial] trace. What do you get?
The answer is in MTW - Gravitation
 
Last edited by a moderator:
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top