- #1

- 1

- 0

## Homework Statement

Refrigerant 134a enters a heat exchanger operating at steady state as a superheated vapor at 10 bars, 60C, where it is cooled and condensed to saturated liquid at 10 bars. The mass flow rate of the refrigerant is 10 kg/min. A separate stream of air enters the heat exchanger at 37C with a mass flow rate of 80 kg/min. Ignoring heat transfer from outside of the heat exchanger and neglecting kinetic and potential energy...

## Homework Equations

Determine the exit air temperature in degrees C.

## The Attempt at a Solution

I started with my conservation of mass and energy equation, and I have

for C.O.M, since its a steady state process, I have m(in) = m(out)

for C.O.E, I have Q-W=m(h(out)-h(in)) and..switched the change in enthalpy to cp(T2-T1) to find T2..