Applying rotation matrix to make inclined plane flat again

Click For Summary
SUMMARY

The discussion focuses on applying a rotation matrix to transform an inclined plane into a flat surface using Euler angles. The proposed rotations include a 45° rotation around the x-axis and a -45° rotation around the y-axis, but these angles are incorrect for achieving the desired outcome. The correct approach involves determining the normal vector of the plane, which is (1,1,1), and finding the appropriate angles to rotate this vector to align with the z-axis. The use of the dot product is suggested as a method to calculate the correct angles while preserving lengths and angles.

PREREQUISITES
  • Understanding of rotation matrices in 3D space
  • Familiarity with Euler angles and their application
  • Knowledge of vector mathematics, specifically normal vectors
  • Experience with geometric visualization tools like GeoGebra
NEXT STEPS
  • Learn how to derive rotation matrices for 3D transformations
  • Study the calculation of normal vectors from given points in a plane
  • Explore the use of the dot product to find angles between vectors
  • Investigate alternative methods for rotations that do not rely on Euler angles
USEFUL FOR

Mathematicians, computer graphics developers, and engineers working on 3D transformations and simulations will benefit from this discussion.

Maestroo
Messages
2
Reaction score
0
I want to rotate an inclined plane to achieve a flat surface.
I think I can use the Euler angles to perform this operation.

Using following data:

LBp3IlS.png


and following rotation matrix

a9675abac5967c098eb5da188a8e6960.png


I think you can make the plane flat by following rotations:
1: rotation around x-axis by 45°
2: rotation around y-axis by -45°
3: no rotation around z-axis

filling in the rotation matrix:

aM7na1B.png


new Z matrix derived from 3rd row: newZ=-X*cosd(45)*sind(-45)+Y*sind(45)+Z*cosd(45)*cosd(-45);

I expect a zero matrix, but this is not the case?
What am I doing wrong?

Thank you
 
Physics news on Phys.org
Maestroo said:
I want to rotate an inclined plane to achieve a flat surface.
I think I can use the Euler angles to perform this operation.

Using following data:

and following rotation matrix

I think you can make the plane flat by following rotations:
1: rotation around x-axis by 45°
2: rotation around y-axis by -45°
3: no rotation around z-axis

Hi Maestroo! Welcome to MHB! ;)

I'm afraid those are not the correct angles.
From those matrices with points, we can find vectors in the plane, and from those we can find a normal vector to the plane.
The normal vector is $(1,1,1)$.
Did you find that as well?

So we want to find a rotation that rotates $(1,1,1)$ to the z-axis.
Preserving the length, that means rotating it to $(0,0,\sqrt 3)$.
Your approach works, but we'll need to find the proper angles.
First we would rotate $(1,1,1)$ around the x-axis to some $(x,0,z)$.
And then we would rotate $(x,0,z)$ around the y-axis to $(0,0,\sqrt 3)$.
However, those angles are not $45^\circ$.
We might use the dot product to figure out the correct angles, while preserving lengths and angles. (Thinking)

For the record, we can also follow a different approach that doesn't use Euler angles.
 
Ok thank you alread

I found out that the shown rotation matrix is for fixed XYZ axes (not relative), I will update later which rotation matrix I'm now using.

I found out the correct 2nd angle by drawing:
rotations - GeoGebra

Now I will search for the way to find this angle.
 

Attachments

  • 2851c9dc2031127e6dacfb84b96446d8.png
    2851c9dc2031127e6dacfb84b96446d8.png
    2.3 KB · Views: 108
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
3
Views
2K
Replies
31
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K