MHB Applying rotation matrix to make inclined plane flat again

Maestroo
Messages
2
Reaction score
0
I want to rotate an inclined plane to achieve a flat surface.
I think I can use the Euler angles to perform this operation.

Using following data:

LBp3IlS.png


and following rotation matrix

a9675abac5967c098eb5da188a8e6960.png


I think you can make the plane flat by following rotations:
1: rotation around x-axis by 45°
2: rotation around y-axis by -45°
3: no rotation around z-axis

filling in the rotation matrix:

aM7na1B.png


new Z matrix derived from 3rd row: newZ=-X*cosd(45)*sind(-45)+Y*sind(45)+Z*cosd(45)*cosd(-45);

I expect a zero matrix, but this is not the case?
What am I doing wrong?

Thank you
 
Physics news on Phys.org
Maestroo said:
I want to rotate an inclined plane to achieve a flat surface.
I think I can use the Euler angles to perform this operation.

Using following data:

and following rotation matrix

I think you can make the plane flat by following rotations:
1: rotation around x-axis by 45°
2: rotation around y-axis by -45°
3: no rotation around z-axis

Hi Maestroo! Welcome to MHB! ;)

I'm afraid those are not the correct angles.
From those matrices with points, we can find vectors in the plane, and from those we can find a normal vector to the plane.
The normal vector is $(1,1,1)$.
Did you find that as well?

So we want to find a rotation that rotates $(1,1,1)$ to the z-axis.
Preserving the length, that means rotating it to $(0,0,\sqrt 3)$.
Your approach works, but we'll need to find the proper angles.
First we would rotate $(1,1,1)$ around the x-axis to some $(x,0,z)$.
And then we would rotate $(x,0,z)$ around the y-axis to $(0,0,\sqrt 3)$.
However, those angles are not $45^\circ$.
We might use the dot product to figure out the correct angles, while preserving lengths and angles. (Thinking)

For the record, we can also follow a different approach that doesn't use Euler angles.
 
Ok thank you alread

I found out that the shown rotation matrix is for fixed XYZ axes (not relative), I will update later which rotation matrix I'm now using.

I found out the correct 2nd angle by drawing:
rotations - GeoGebra

Now I will search for the way to find this angle.
 

Attachments

  • 2851c9dc2031127e6dacfb84b96446d8.png
    2851c9dc2031127e6dacfb84b96446d8.png
    2.3 KB · Views: 92
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
2
Views
841
Replies
7
Views
2K
Replies
1
Views
3K
Replies
2
Views
2K
Replies
3
Views
991
Replies
5
Views
2K
Replies
5
Views
2K
Back
Top