(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

The infinite Series starts at n=1 and is (4-sin(n))/(n^2 + 1)

For each series which converges, give an approximation of its su, together with an error estimate, as follows. First calculate the sum s_5 of the first 5 terms, Then estimate the "tail" which is the infinite series starting at n=6 by comparing it with an appropiate improper integral or geometric series.

2. Relevant equations

3. The attempt at a solution

Ok, so to start off I proved it converges by comparing it to 5/n^2 since this series is larger then the original one and it converges by the p-series test then the original series also converges. I calculated the first five sums and got 2.863 for my s_5 I'm unsure of how to calculate the tail however, and unsure of how to calculate the error. At first I was thinking to do the improper integral from 6 to infinite of 5/(n^2) since I compared it to this before, but with that I got .8 and that seemed large for the tail of this series. I am also unsure of how to find the error? I was thinking that once i find the value of the tail that the value of (s_5 + tail) - (s_5) would be the error? I don't really know. Please help thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Approximating Infinite Series

**Physics Forums | Science Articles, Homework Help, Discussion**