• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Arc-length integral with curve giving extremal value

  • Thread starter Leb
  • Start date

Leb

94
0
1. The problem statement, all variables and given/known data
View attachment B3.bmp
For whoever does not want to read the attached problem:

Firstly, I need to express the arc-length from given [itex]x=r\cos\theta, y=r\sin\theta z = f(r), \text{ where } f(r) \text{ is an infinitely differentiable function and } r=r(\theta) \text{ i.e. parameter is } \theta[/itex] I begin with expressing it as [itex]ds = \sqrt{ r^{2} + r'^{2} + f'^{2} }[/itex] is that correct ?

I then need to show that the solutions of those curves are given by:
[itex]r ' ^{2} = r^{2}\frac{\left( \frac{r^{2}}{C} - 1\right)}{1 + f ' ^{2)}}[/itex]



2. Relevant equations

Lagrangian is independent of theta in this case, so I think I can use
[itex]\frac{d}{d\theta}\left( L - r' \frac{\partial{L}}{\partial{r'}} \right) = 0 [/itex]

3. The attempt at a solution


Using the above, the term in parenthesis is equal to a constant. Differentiating L w.r.t. r' and rearranging I get [itex]r'^{2} = \frac{r^{4}+2f'^{2}r^{2} + f'^{4}-Br^{2} - Bf'{2}}{B}[/itex] where B is a constant. I thought that this uses the good old multiply by "1" trick, but when I tried it it got no cancellations.

I can see the [itex]r^{2}\left( \frac{r^{2}}{C} - 1\right)
[/itex] term in there, but do not know how to get the rest...
 
6,049
390
For the line element ds the following is true ##ds^2 = dx^2 + dy^2 + dz^2##. Since your curve is on a surface parametrized by ##r## and ##\theta##, and since ##r## itself is a function of ##\theta##, you should end up with ##ds = g(\theta)d\theta##.
 

Leb

94
0
Thanks for the reply !
Do you mean I should express [itex]\frac{df}{d\theta} \text{ as } \frac{df}{dr}\frac{dr}{d\theta}[/itex] ?
 
6,049
390
What I mean is that the expression for ds you got is incorrect. You can derive the correct equation from the expression for ds in the Cartesian coordinates by using the chain rule.
 
6,049
390
[tex]
ds^2 = dx^2 + dy^2 + dz^2
= (d(r \cos \theta))^2 + (d(r \sin \theta))^2 + (d(f(r)))^2
= (dr \cos \theta - r \sin \theta d\theta)^2
+ (dr \sin \theta + r \cos \theta d\theta)^2
+ (f'dr)^2
\\
= dr^2 + r^2 d\theta^2 + f'^2 dr^2
= (1 + f'^2)dr^2 + r^2d\theta^2
\\
= (1 + f'^2)(dr(\theta))^2 + r^2d\theta^2
= (1 + f'^2)(r'd\theta)^2 + r^2d\theta^2
= ((1 + f'^2)r'^2 + r^2)d\theta^2
\\
ds = \sqrt {(1 + f'^2)r'^2 + r^2}d\theta
[/tex]
 

Leb

94
0
Thanks for taking the time to type that, but if we parameterize w.r.t. theta, why do we have d \theta ?
 
6,049
390
Parametrized by ## \theta ## means that the length is a function of ## \theta ##: ## s = s(\theta) ##, thus ## ds = s'd\theta ##.
 

Leb

94
0
So I take it that the previous link is rubbish ? Thanks again !
 
6,049
390
No, it is not rubbish. If you look carefully, the formula I derived equals their formula if f = const. Your problem has three dimensions, not two as they have.
 

Leb

94
0
Last edited:
6,049
390
Why should it disappear? Take a very simple example: ## y = x^2 ##. You can say that "y is parametrized by x". Then ## dy = 2x dx ##; x does not disappear. Even if ## y = x ##, you still have ## dy = dx ##.
 

Leb

94
0
Well, I am a numpty and always had particular trouble with notation of derivatives and using the "implicit" chain rule.

Anyway, thanks very much for bothering to reply !
 

Leb

94
0
Hehe, reparametrization... I always viewed the parameters as an "arbitrary" choice when we are talking about simple curvy curves (not circles or ellipses).

Thanks for the link !
 

Want to reply to this thread?

"Arc-length integral with curve giving extremal value" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top