sokrates
- 481
- 2
crazy_photon said:I've been seeing your style of responses and let me try to emulate you a little (just for fun, shall we?).
I think you're the one that needs to go back (waaaaay back) and retake the beginning solid state class where things like Ohms Law (direct consequence of Drude model) stems from the classical description of charges colliding as billiard balls - hence highly localized in space. Even my 9th grader sister knows that!You don't have to believe her though, just take some solid-state text that you might have and read it again... perhaps its been too long?
Did I say anything that contradicts that? It's interesting that you reached that conclusion. Maybe you think I jumped from kinder-garden to graduate school without seeing the "classical description of billiard balls as a model of resistivity" ( whatever that is )
So, as I have asked once, I'll repeat myself - from your posts you sound like an expert on condensed-matter physics on the nanoscale. So, can you please enlighten us (instead of asking questions back) as to what DOES happen to say resistivity on the nanoscale and from what physical principles does it follow from? I'd like to learn from the expert instead of being called names... again.
I never said I am an expert. I was repeatedly saying that I am a Ph.D student. And I am sorry I just don't feel like spoon-feeding you after a heated debate where people are calling others "jerks" because they can't handle an intellectual discussion. I have extensively posted in this thread and if you care to read what I have posted carefully you'll see plenty of references where you could start learning what happens to resistivity when L goes to zero. I hinted the answers quite a lot of times. If you are truly interested in learning, PM me and I'll help you.