Graduate Are equations of motion invariant under gauge transformations?

Click For Summary
The discussion centers on the invariance of equations of motion under gauge transformations. It confirms that while the action is invariant, the equations of motion are generally covariant rather than invariant. Specifically, in electrodynamics, the equations of motion are invariant under gauge transformations, whereas in Yang-Mills theories, they are only covariant. Additionally, the Einstein-Hilbert action is invariant under general coordinate transformations, but the Einstein equations of motion are also just covariant. Thus, the distinction between invariance and covariance is crucial in these theories.
Baela
Messages
17
Reaction score
2
We know that all actions are invariant under their gauge transformations. Are the equations of motion also invariant under the gauge transformations?

If yes, can you show a mathematical proof (instead of just saying in words)?
 
Last edited:
Physics news on Phys.org
Yes. Since the action is the same the path of least action is also the same.
 
  • Like
Likes Vanadium 50, vanhees71 and malawi_glenn
No, in general they are just covariant. For electrodynamics the equations of motion are invariant under gauge transformations, but for Yang-Mills theories they are just covariant. Similarly, the Einstein-Hilbert action is invariant under general coordinate transformations, but the Einstein equation of motion is just covariant.
 
  • Like
Likes vanhees71 and Baela
Demystifier said:
No, in general they are just covariant. For electrodynamics the equations of motion are invariant under gauge transformations, but for Yang-Mills theories they are just covariant. Similarly, the Einstein-Hilbert action is invariant under general coordinate transformations, but the Einstein equation of motion is just covariant.
Thanks!
 
  • Like
Likes Demystifier
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K