burakumin said:
I have never been happy with the fact a single quantum state could be encoded by an infinite number of vectors |\phi\rangle. Choosing a unit vector limits this overabundance but you have still an infinity of (physically equivalent) possibilities left. I later realized that the projector |\phi\rangle\langle\phi| was unique and had the other advantage of being of the same kind as mixed states. If observable are operators and states can be represented (and in a better way) by operators, then fine, let us speak about operators only! Furthermore if we do not care about what the operators are applied to, let us just forget the whole idea of operators and concentrate on their mutual relations. That's where I discovered C* algebras.
It's true that the operators representing observables (if they are unbounded, their exponentials) can be shown to form C*-algebras. It's also true that quantum states are actually positive trace-class operators of trace 1. But to finish the argument that it's reasonable to use only C*-algebras, one also uses the fact that any state ##T## determines a linear functional ##\omega:\mathcal{U}\longrightarrow\mathbb{C}##, where ##\mathcal{U}## is the C*-algebra (with unit), via ##\omega(a)=tr(Ta)##, for all ##a## in the algebra (seen as operators). This functional satisfies ##
\omega(a^{*}a)\geq0## for all ##a## in the algebra (positivity) and ##
\omega(I)=1
##. Furthermore, we know that the physical interpretation of
##\omega(a)=tr(Ta)## is that it gives the expectation value of observable ##a## in state ##T##. Thus, one postulates that a quantum system is characterized by some abstract C*-algebra with unit, that the states are linear positive normalized functionals on this algebra and that the interpretation is that they give expectation values.
burakumin said:
In the end I'm wondering if there are good reasons to keep the idea of Hilbert space or if only its historical primacy keeps its widely used.
As already noted by
@micromass, by the GNS construction, one can always get a realization of the abstract C*-algebra as operators in a Hilbert space. Of course, the idea is to work in the abstract C*-algebra as much as you can, in order to obtain very general and powerful results.
But the problem is that the formalism is too abstract. The Hilbert spaces have more clear physical interpretations. For example, consider the Weyl C*-algebra that describes the Klein-Gordon scalar field in flat spacetime. Very (very!) schematically and somewhat sloppy, using the symplectic form associated to the Klein-Gordon equation,
$$\Omega(\varphi,\varphi')=\int_{\mathbb{R}^{3}}\left(\varphi\dot{\varphi}'-\varphi'\dot{\varphi}\right)\mathrm{d}^{3}x$$
(where the phis are solutions to the Klein-Gordon equation) one can define an "inner product", ##
(\varphi,\varphi')=-i\Omega(\overline{\phi},\varphi')
##
on the space of solutions of this equation. But this "inner product" is not positive. By restricting it to certain subspaces, one gets an actual inner product. Cauchy-complete the pair subspace+positive inner product and we get a Hilbert space, ##\mathcal{H}_{+}##.
One can build many different Hilbert spaces in this way. Actually, the key element is the projection map ##K## that maps general solutions to the Hilbert space we just built, it "takes" the "positive" part of these solutions. Different constructions have associated different maps, since the chosen subspace changes. Take now the Bosonic Fock space built from ##\mathcal{H}_{+}##, ##\mathcal{F}_{S}\left(\mathcal{H}_{+}\right)##. Using the creation and annihilation operators there, define the following operator: ##
\hat{\Omega}(\psi)=A(\overline{K\psi})+A(K\psi)
##, for all solutions psi. This operator is self-adjoint in certain domain. By taking the exponentials of these operators, we get an irreducible and faithful representation of the Weyl C*-algebra, i.e., we quantized the field. Usually, the basic Hilbert spaces are isomorphic, but different projection maps ##K## give different, inequivalent represenations of the algebra (the vector space of solutions is infinite dimensional so the Stone-von Neumann theorem does not hold). In certain cases, these constructions have interesting physical interpretations. If the spacetime is flat, one has two interesting notions of time translation: the one given by inertial observers and the one given by observers with uniform acceleration (both are timelike Killing fields, the second case is just the Lorentz boost). If you take the subspace of solutions "which oscillate with positive frequency" with respect to one of these notions of time, then the subspace satisfies the required conditions to make the inner product positive. In the first case, the Hilbert space is interpreted as the one-particle space according to an inertial observer. In the second case, the Hilbert space is interpreted as the one-particle space according to an accelerated observer. The respective Fock spaces represent, of course, their respective quantum field theories, which are not equivalent. So, the Hilbert spaces and the representations give us very concrete quantum systems (more precisely, different realizations of the same and unique quantum system) with very concrete and clear physical interpretations.
So, what's the use of the algebraic formulation in this case? Let's go back to the GNS theorem. In order to build a representation, you need to specify a particular algebraic state. Each states gives a different representation. For the case of the Weyl C*-algebra, there are special states called Gaussian states. The GNS constructions of these states are always over Fock spaces and the chosen states get mapped to the vacuum in the Fock space realization. As you may have guessed now, the Fock space realizations we considered earlier are all examples of this type of GNS construction. The interesting thing to note is that when we take the vacuum states of the inertial and accelerated realizations and view them as algebraic states, they don't coincide. In fact, the state in the accelarated representation that most approximates the vacuum of the inertial realization is a thermal state. This is one way of seeing the Unruh effect. If the field is in the algebraic state represented by the vacuum of the inertial realization, observers in this realization will see no particles, while the ones of the accelerated realization will see a thermal bath of particles. Thus, the algebraic approach allows us to compare the physics of inequivalent representations of the quantum field's C*-algebra.
burakumin said:
The only limitation of c* algebra I'm aware of (but I'm really more aware of the mathematical structure than its use in qm) is that they can only represent bounded operators whereas an Hilbert space can be extended to a rigged Hilbert space to deal rigorously with that problem. Are there some known similar structures that extend c*-algebras and address the same issue ? Are they other limitations and situations where Hilbert spaces still remain better tools ?
You don't need rigged Hilbert spaces in order to deal with unbounded operators (if that's what you meant, maybe I misread you?). All of that is well covered by von Neumann's spectral theorem for unbounded self-adjoint operators in ordinary Hilbert spaces. Thanks to this theorem, all of quantum mechanics (including operators with continuous spectrum) can be done without problem in ordinary Hilbert spaces.
The C* structure is not really indispensable. In fact, one can prove an analogous version of the GNS theorem for *-algebras with unit. The representation is in terms of closable operators.
A limitation of the algebraic approach is that it only deals with a very reduced set of observables (in the case of the Weyl algebra, it only gives you a quantum version of the field). In order to obtain more observables, one usually goes to a representation in a Hilbert space, obtains in this way a quantum field operator and then canonically quantizes other observables, like, e.g., the energy (one substitutes the classical field by the quantum operator in the classical expression).
Finally, in the case of the Weyl algebra based on a finite dimensional space of solutions, the Stone-von Neumann theorem holds and then one simply works in the Hilbert space since all realizations of the algebra are equivalent and thus the algebraic approach becomes somewhat superfluous.