Are Killing Vectors the Key to Solving Complex Equations?

  • Thread starter Thread starter TimeFall
  • Start date Start date
  • Tags Tags
    Vectors
TimeFall
Messages
12
Reaction score
0
See below. I screwed up the edit and the use of tex.
 
Last edited:
Physics news on Phys.org
EDIT: Used proper tex (hopefully!)

Hello! I'm working through Weinberg's book Gravitation and Cosmology, and I'm currently in chapter 13, symmetric spaces. I'm trying to follow his derivation of the Killing condition, and I simply cannot, for the life of me, get from equation 13.1.2 to equation 13.1.4. I plugged 13.1.3 into 13.1.2 as he says to, but what I get is very different.
13.1.2: g_{\mu\nu} (x) = \frac{\partial x'^\rho}{\partial x^\mu} \frac{\partial x'^\sigma}{\partial x^\nu}g_{\rho\sigma} (x')
And 13.1.3: x'^\mu = x^\mu + \epsilon \zeta^\mu (x)

Then, only keep the result of the substitution to first order in epsilon. When I do this, I get:
g_{\mu\nu} (x) = \frac{\partial x^\rho}{\partial x^\mu} \frac{\partial x^\sigma}{\partial x^\nu} g_{\rho\sigma} (x') + \epsilon \left [ \frac{\partial \zeta^\sigma (x) }{\partial x^\nu } \frac{\partial x^\rho }{\partial x^\mu } g_{\rho\sigma} (x') + \frac{\partial \zeta^\rho (x)}{\partial x^\mu } \frac{\partial x^\sigma }{\partial x^\nu } g_{\rho\sigma} (x') \right ].

It's supposed to be 13.1.4: 0 = \frac{\partial \zeta^\mu (x)}{\partial x^\rho} g_{\mu\sigma}(x) + \frac{\partial \zeta^\nu (x)}{\partial x^\sigma} g_{\rho\nu} (x) + \zeta^\mu (x) \frac{\partial g_{\rho\sigma} (x)}{\partial x^\mu}

All of his metrics are functions of x, not x', and he has no epsilon in the equation. That makes it seem to me that the first term on the right hand side of the equation I got has to equal the left hand side, so that they cancel and equal 0. Then the epsilon can divide out. The problem is that then there are only two terms left, as opposed to the three that he has. I'm guessing it has something to do with switching from g(x) to g(x'), but I don't see it. Any help would be greatly, greatly appreciated! Thank you very much!
 
Your expression reduces to ##g_{\mu\nu}(x) = g_{\mu\nu}(x) + \epsilon (\zeta^{\rho}\partial_{\rho}g_{\mu\nu}(x) + g_{\mu\sigma}(x)\partial_{\nu}\zeta^{\sigma} + g_{\rho \nu}\partial_{\mu}\zeta^{\rho}) ## after using the fact that ##g_{\rho\sigma}(x') = g_{\rho\sigma}(x) + \epsilon \zeta^{\gamma}\partial_{\gamma}g_{\rho\sigma}(x) + O(\epsilon^2)## hence ##\zeta^{\mu}\partial_{\mu}g_{\rho\sigma}(x) + g_{\rho\nu}(x)\partial_{\sigma}\zeta^{\nu} + g_{\mu\sigma}\partial_{\rho}\zeta^{\mu} = 0 ## after appropriately relabeling the indices. Don't forget that ##\partial_{\nu}x^{\mu} = \delta^{\mu}_{\nu}##.
 
  • Like
Likes 1 person
Thank you very much! I totally forgot about expanding the metric, as well as the delta condition.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Back
Top