MHB Are Measures Really Equal If Integrals of Continuous Functions Match?

  • Thread starter Thread starter Gerald1
  • Start date Start date
Gerald1
Messages
2
Reaction score
0
between point (6) and (7) on page 323 of [this pdf file][1]. [1]: http://59clc.files.wordpress.com/2012/08/functional-analysis-_-rudin-2th.pdf

rudin claims that since the integrals (w.r.t two different measures) of real valued continuous functions are equal, then the measures are equal.

I think he concludes the integrals are equal for continuous functions by using real and imaginary parts, but even so how does it then follow that the measures are equal.

Many thanks
 
Physics news on Phys.org
Gerald said:
I think he concludes the integrals are equal for continuous functions by using real and imaginary parts, but even so how does it then follow that the measures are equal.
Integration is a positive linear functional on the space of continuous functions. It can be shown, as in the representation theorems, that such linear functionals induce measures for which the functional is integration along that induced measure.

Riesz?Markov?Kakutani representation theorem - Wikipedia, the free encyclopedia
 
ThePerfectHacker said:
Integration is a positive linear functional on the space of continuous functions. It can be shown, as in the representation theorems, that such linear functionals induce measures for which the functional is integration along that induced measure.

Riesz?Markov?Kakutani representation theorem - Wikipedia, the free encyclopedia

How does that show the measures are equal?
 
Gerald said:
How does that show the measures are equal?

Because more general functions can be approximated by continuous functions. If the measures are equal on the continuous functions they are forced to be equal everywhere.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top