Are P Orbital Wavefunctions Orthonormal in the L=1 Subspace?

  • Thread starter Thread starter physgirl
  • Start date Start date
  • Tags Tags
    Orbital
physgirl
Messages
99
Reaction score
0

Homework Statement



I have to show that the p orbital wavefunctions are orthonormal to eath other in l=1 subspace.

Homework Equations





The Attempt at a Solution



looking at my notes, I thought the expressions for p orb wavefunctions were:
Psi_px=sqrt(3/4pi) cos(phi) sin(theta)
Psi_py=sqrt(3/4pi) cos(theta) sin(theta)
Psi_pz=sqrt(3/4pi) cos(theta)

I can show that they are all orthogonal to each other (for instance, integral of psi_px times psi_py gives 0) over the range of 0<theta<pi, 0<phi<2pi.

However, I cannot show that they are all normal (square of each psi is equal to 1)... do I have the wrong psi expressions or am I integrating wrong??
 
Physics news on Phys.org
anyone? :(
 
physgirl said:

Homework Statement



I have to show that the p orbital wavefunctions are orthonormal to eath other in l=1 subspace.

Homework Equations





The Attempt at a Solution



looking at my notes, I thought the expressions for p orb wavefunctions were:
Psi_px=sqrt(3/4pi) cos(phi) sin(theta)
Psi_py=sqrt(3/4pi) cos(theta) sin(theta)
Psi_pz=sqrt(3/4pi) cos(theta)

I can show that they are all orthogonal to each other (for instance, integral of psi_px times psi_py gives 0) over the range of 0<theta<pi, 0<phi<2pi.

However, I cannot show that they are all normal (square of each psi is equal to 1)... do I have the wrong psi expressions or am I integrating wrong??

Your third expression is indeed the spherical harmonic Y_1^0 but the other two are
Y_1^{\pm 1} = \mp { \sqrt{\frac{3}{8 \pi}} \sin \theta e^{\pm i \phi}
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top