AxiomOfChoice
- 531
- 1
Let T be a (possibly unbounded) self-adjoint operator on a Hilbert space \mathscr H with domain D(T), and let \lambda \in \rho(T). Then we know that (T-\lambda I)^{-1} exists as a bounded operator from \mathscr H to D(T). Question: do we also know that (T-\lambda I)^{-1} is self-adjoint? Can someone prove or give a counterexample?