I Are the coordinate axes a 1d- or 2d-differentiable manifold?

Delong66
Messages
4
Reaction score
0
Suppose $$ D=\{ (x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\} \cup \{ (0,y) \in \mathbb{R}^2 : y \in \mathbb{R} \}$$ is a subset of $$\mathbb{R}^2 $$ with subspace topology. Can this be a 1d or 2d manifold?
Thank you!
 
Physics news on Phys.org
The set D is not a manifold. Every point in a manifold must have a neighbourhood that is homeomorphic to an open subset of a Euclidean space. The point (0,0) in set D has no such neighbourhood, as any open set containing (0,0) has an intersection of the two lines in it, and neither 1D nor 2D Euclidean space has an open subset consisting of such an intersection.
 
And removal of a single point, the origin, would disconnect it into 4 components, unlike any surface or 1-manifold. It's clearly not a differentiable ( if it was a manifold ), as its tangent space is not defined at the origin. It's not even a manifold with boundary, as no neighborhood of the origin is homeomorphic to a (subspace) neighborhood of the upper half plane .
 
WWGD said:
And removal of a single point, the origin, would disconnect it into 4 components, unlike any surface or 1-manifold. It's clearly not a differentiable ( if it was a manifold ), as its tangent space is not defined at the origin. It's not even a manifold with boundary, as no neighborhood of the origin is homeomorphic to a (subspace) neighborhood of the upper half plane .
If you remove the origin, I believe it is a topological manifold.
 
jbergman said:
If you remove the origin, I believe it is a topological manifold.
Indeed, 4 lines, each a 1-manifold, globally homeomorphic to the Reals. A manifold with 4 connected components.
 
Differential geometry is a difficult subject that lacks "easy" pedagogical examples. However, using GNU/Linux tools, as I attempt to demonstrate in my web page, differential geometry can be easily explored so as to attain a thorough understanding of its principles. "A picture is worth a thousand words" is the old adage and it does indeed apply to differential geometry. Please feel free to visit my page and offer a comment: http://lapiet.info/mathphys/diffgeo/diffgeo1/monkey_saddle.html...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
801
  • · Replies 2 ·
Replies
2
Views
428
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K