Are the following 3 statements true and does the cantor-bernstein theorem follow

  • Thread starter Thread starter Wiz14
  • Start date Start date
  • Tags Tags
    Theorem
Wiz14
Messages
20
Reaction score
0
1.There exists an injection from A to B ⇔ A ≤ B
2.There exists an injection from B to A ⇔ B ≤ A
3.If A ≤ B and B ≤ A, then A = B

Does this prove the Cantor Bernstein theorem? Which says that if 1 and 2 then there exists a Bijection between A and B (A = B)

And if it does, why is there a different, longer proof for it?
 
Physics news on Phys.org
Wiz14 said:
1.There exists an injection from A to B ⇔ A ≤ B
2.There exists an injection from B to A ⇔ B ≤ A
3.If A ≤ B and B ≤ A, then A = B

Does this prove the Cantor Bernstein theorem?

No. 1) and 2) are definitions of ≤ and ≥ for cardinalities of sets. 3) is a nontrivial consequence for which you have provided no argument at all.
 
Statement 3 IS the Cantor-Schroeder-Berstein theorem: "If the cardinality of A is less than or equal to the cardinality of B, and the cardinality of B is less than or equal to the cardinality of A, then the cardinality of A is equal to the cardinality of B." You can also state it as "If there is an injection from A to B, and there is an injection from B to A, then there is a bijection from A to B." As Norweigan said, it requires a nontrivial argument to prove this theorem.

EDIT: See the easy-to-understand proof here.
 
Last edited:
lugita15 said:
Statement 3 IS the Cantor-Schroeder-Berstein theorem: "If the cardinality of A is less than or equal to the cardinality of B, and the cardinality of B is less than or equal to the cardinality of A, then the cardinality of A is equal to the cardinality of B." You can also state it as "If there is an injection from A to B, and there is an injection from B to A, then there is a bijection from A to B." As Norweigan said, it requires a nontrivial argument to prove this theorem.

EDIT: See the easy-to-understand proof here.

I am reading that proof now but where is the flaw in my reasoning?
A ≤B and B ≤ A is like saying A = B or A is strictly less than B and B is strictly less than A, which is a contradiction, so A must = B.
 
Wiz14 said:
I am reading that proof now but where is the flaw in my reasoning?
A ≤B and B ≤ A is like saying A = B or A is strictly less than B and B is strictly less than A, which is a contradiction, so A must = B.
If A and B were numbers, then yes it would be trivially true that if A≤B and B≤A then A would equal B. But A and B are sets, and what we mean by A≤B is that "there exists an injection from A to B". We don't know beforehand whether "less than or equal to" for sets, which has to do with existence of an injection, has the same properties as "less than or equal to" for numbers. We have to prove it. So you can't use your familiar properties of numbers, like the fact that two things can't be strictly less than each other.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top