Suppose there is another solution set A', B', C', D' with larger numbers.
A' = A + n (=1+n)
B' = B + m (=1+m)
C' = C + o (=2+o)
D' = D + p (=4+p)
where n,m,o,p are some nonnegative integers that you add to the original numbers to get the new solution numbers.
Then
A' x B' x C' x D' = (A + n)(B + m)(C + o)(D + p)
= ABCD + ABCp + ABoD + ABop + AmCD + AmCp + AmoD + Amop + nBCD + nBCp + nBoD + nBop + nmCD + nmCp + nmoD + nmop
If none of n,m,o, or p are zero, then you can just match terms to find that
ABCD + ABCp + ABoD + ABop + AmCD + AmCp + AmoD + Amop + nBCD + nBCp + nBoD + nBop + nmCD + nmCp + nmoD + nmop
> A + n + B + m + C + o + D + p
= A' + B' + C' + D'
So the multiplication is too big for another solution to work if all the additive terms are positive.
Now it gets a little tricky when some of the additive terms are terms (n,m,o,p) are zero. If all 4 are zero (n=m=o=p=0), then we just have the origional solution, so we can ignore that possibility.
If 3 are zero, then
A + B + C + D = A x B x C x D and
A' + B + C + D = A' x B x C x D so subtracting the two, we have
A - A' = (A - A') x B x C x D
which can only happen if B,C,D are all 1, so we can ignore that case too.
This leaves the 2 cases left: either 1 or 2 of the additive numbers (n,m,o,p) is zero. I will just choose particular variables to set to zero, but you could switch them around.
If n=0, but no others, then
A' x B' x C' x D'
= ABCD + ABCp + ABoD + ABop + AmCD + AmCp + AmoD + Amop
= (A + 0)(BCD) + (B + m)(ACp) + (C + o)(AmD) + (D + p)(ABo) + Amop
= A' x (BCD) + B' x (ACp) + C' x (AmD) + D' x (ABo) + Amop
> A' + B' + C' + D'
If n and m are both zero (n=m=0) but no others, then
A' x B' x C' x D'
= ABCD + ABCp + ABoD + ABop
= A + B + C + D + ABCp + ABoD + ABop, remember A+B+C+D = ABCD!
> A + B + C + o + D + p, by matching terms
= A' + B' + C' + D'
Soooo... there are no larger solutions, and smaller possibilities ({1,1,1,1}, {1,1,1,2},...{1,1,2,3}) can be checked by hand.
Looks like the solution you got is the only one.