Are These Limit Points, Limsup, and Liminf Correct for These Sequences?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Limit Points
Click For Summary
SUMMARY

The forum discussion focuses on determining the limit points, limit superior (lim sup), and limit inferior (lim inf) for four specific sequences. The sequences analyzed include: 1) $a_n=(-1)^n\frac{3n+4}{n+1}$ with limit points 3 and -3, yielding $\lim\sup a_n=3$ and $\lim\inf a_n=-3$; 2) $a_n=\sqrt[n]{n+(-1)^nn}$ with limit points 1 and 0, resulting in $\lim\sup a_n=1$ and $\lim\inf a_n=0$; 3) $a_n=\left ( \frac{n+(-1)^n}{n}\right )^n$ with limit points $e$ and $e^{-1}$, giving $\lim\sup a_n=e$ and $\lim\inf a_n=e^{-1}$; and 4) $a_n=(-1)^{\frac{n(n+1)}{2}}\sqrt[n]{1+\frac{1}{n}}$, where further analysis is suggested to find the limit points. The discussion confirms the correctness of the calculations and suggests exploring subsequences for deeper insights.

PREREQUISITES
  • Understanding of limit points in sequences
  • Familiarity with the concepts of limit superior and limit inferior
  • Knowledge of subsequences and their properties
  • Basic proficiency in mathematical analysis and sequences
NEXT STEPS
  • Explore the properties of limit points in sequences
  • Learn about subsequences and their role in determining limit points
  • Study the application of the Bolzano-Weierstrass theorem in sequence analysis
  • Investigate advanced techniques for proving uniqueness of limit points
USEFUL FOR

Mathematics students, educators, and researchers interested in sequence analysis, particularly those studying real analysis and convergence properties of sequences.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to find the $\lim\sup$, $\lim\inf$ and the limit points of the following sequences:
1. $a_n=(-1)^n\frac{3n+4}{n+1}$
2. $a_n=\sqrt[n]{n+(-1)^nn}$
3. $a_n=\left ( \frac{n+(-1)^n}{n}\right )^n$
4. $a_n=(-1)^{\frac{n(n+1)}{2}}\sqrt[n]{1+\frac{1}{n}}$ I have done the following:

1. $$a_{2k}=(-1)^{2k}\frac{3(2k)+4}{2k+1}=\frac{6k+4}{2k+1}\Rightarrow \lim_{k\rightarrow \infty}a_{2k}=3 \\ a_{2k-1}=(-1)^{2k-1}\frac{3(2k-1)+4}{2k-1+1}=-\frac{6k+1}{2k}\Rightarrow \lim_{k\rightarrow \infty}a_{2k-1}=-3$$
So, $(a_n)$ has the limit points $3$ and $-3$.
Therefore, $\lim\sup a_n=3$ and $\lim\inf a_n=-3$. 2. $$a_{2k}=\sqrt[2k]{2k+(-1)^{2k}2k}=\sqrt[2k]{4k}=2^{\frac{1}{k}}\left ( k^{\frac{1}{k}}\right )^{\frac{1}{2}}\Rightarrow \lim_{k\rightarrow \infty}a_{2k}=1\\ a_{2k-1}=\sqrt[2k-1]{2k-1+(-1)^{2k-1}(2k-1)}=0\Rightarrow \lim_{k\rightarrow \infty}a_{2k-1}=0$$
So, $(a_n)$ has the limit points $1$ and $0$.
Therefore, $\lim\sup a_n=1$ and $\lim\inf a_n=0$. 3. $$a_{2k}=\left ( \frac{2k+(-1)^{2k}}{2k}\right )^{2k}=\left (\frac{2k+1}{2k}\right )^{2k}=\left (1+\frac{1}{2k}\right )^{2k}\Rightarrow \lim_{k\rightarrow \infty}a_{2k}=e \\ a_{2k-1}=\left ( \frac{2k-1+(-1)^{2k-1}}{2k-1}\right )^{2k-1}=\left (\frac{2k-1-1}{2k-1}\right )^{2k-1}=\left (1-\frac{1}{2k-1}\right )^{2k-1}\Rightarrow \lim_{k\rightarrow \infty}a_{2k-1}=e^{-1}$$
So, $(a_n)$ has the limit points $e$ and $e^{-1}$.
Therefore, $\lim\sup a_n=e$ and $\lim\inf a_n=e^{-1}$. Is everything correct so far? How could we prove that the limit points that I found at each case are the only ones? (Wondering) 4. $$a_n=(-1)^{\frac{n(n+1)}{2}}\sqrt[n]{1+\frac{1}{n}}$$
I tried to find again the limits of $a_{2k}$ and $a_{2k-1}$ but I failed.
Do we find the limit points in this case in an other way? (Wondering)
 
Physics news on Phys.org
mathmari said:
Is everything correct so far? How could we prove that the limit points that I found at each case are the only ones? (Wondering) 4. $$a_n=(-1)^{\frac{n(n+1)}{2}}\sqrt[n]{1+\frac{1}{n}}$$
I tried to find again the limits of $a_{2k}$ and $a_{2k-1}$ but I failed.
Do we find the limit points in this case in an other way? (Wondering)

Hey mathmari! (Smile)

They look good to me.

How about trying $a_{4k},\ a_{4k+1},\ a_{4k+2}$, and $a_{4k+3}$? (Wondering)
 
I like Serena said:
They look good to me.

(Happy)

I like Serena said:
How about trying $a_{4k},\ a_{4k+1},\ a_{4k+2}$, and $a_{4k+3}$? (Wondering)

Calculating these we get that the limit points are $1$ and $-1$, so $\lim\sup a_n=1$ and $\lim\inf a_n=-1$, right? (Wondering)

Instead of these we could also calculate the subsequences $a_{4k},\ a_{4k-1},\ a_{4k-2}$, and $a_{4k-3}$, or not? (Wondering)
 
Yes και yes. (Mmm)
 
I like Serena said:
Yes και yes. (Mmm)

Thank you! (Mmm)
 

Similar threads

Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K