In Quantum Mechanics, Schrodinger's equation describes any particle. (Remember though that Schrodinger's equation is a nonrelativistic equation, so without going to relativistic quantum mechanics--e.g. the Dirac equation--the particles that are described are the nonrelativistic ones like electrons, protons, neutrons, quarks, etc. but not photons.)
Schrodinger's equation dictates the behavior of a particle in the presence of a potential. The energy levels, or the different energy eigenstates of a potential, depend on the form of the potential and the intrinsic properties of the particle in question (mass, charge, etc.) Each energy eigenstate has a given energy and is associated with a wavefunction which gives the probability amplitude for finding a particle in any region of space.
As an archetypal example, the Hydrogen atom's energy levels can be calculated from the Schrodinger equation by 1: reducing the proton-electron system (a two-body problem) to an "reduced mass" in a static potential, just like in orbital mechanics and then 2: solving for the energy eigenstates of this static potential (for a particle with mass equal to the reduced mass) using the Schrodinger equation.
In other words, a particle only gets energy levels available to it when it's in some kind of potential. The energy levels can be discrete or continuous depending on the form of the potential. A free particle, or one in a trivial potential, has energy eigenstates which are plane waves of any energy. Only a particle in a potential well, e.g. a particle in a 1/r attractive potential, takes on a discrete spectrum of energy levels.
In elementary quantum mechanics, the potential that appears in the Schrodinger equation is a classical potential--exactly like the ones in classical mechanics. Once you start trying to deal with the quantum details of a real interaction--for example trying to account for the fact that an electron in a hydrogen atom is actually interacting with the proton via the exchange of photons--you are forced into Quantum Field Theory.