Argue that lim g(x), with x → -1, = -2

  • Thread starter Thread starter SixBooks
  • Start date Start date
SixBooks
Messages
5
Reaction score
0
Hello, everybody!

The function g: R → R is differentiable in -1, g' (-1) = 2 and g (-1) = -2. Can someone show me (how to argue) that lim g(x), with x → -1, = -2?

Thanks in advance!
 
Physics news on Phys.org
If a function is differentiable at a point, then it is continuous there.

If ##g## is differentiable, then:

$$\displaystyle \lim_{x -> a} \frac{f(x) - f(a)}{x - a} = f'(a)$$
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top