Arithmetic progression Trouble

mark-ashleigh
Messages
30
Reaction score
0
The first term of an arithmetic progression is (1-x)^2 and the second term is 1+x^2 .If the sumj of the first ten terms is 310 , find the possible values of x.

I have my A/S maths exam next month, but i am still having trouble with arithmetic progression. The above question is causing me some trouble .

First i expanded the brackets using binomial expansion .

Then as i had a quadratic i used the theorem to find values for x .

Once i found x i substituted into the first two terms to find the difference .

I found the first term = 1.98 the second = 6.8 with a diff of 4.8 .

As a + ( 9 X d ) = the tenth term = 45.36

And the formula for the sum is

S 10 = 10 x ( a + l)/2 ...where l = 45.36

Why do i keep getting 236 .7

Am i doing something drasticaly wrong?

Many thanks .
 
Mathematics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top