MHB Arithmetic Progression: Expressing d in Terms of x,y,z,n

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a_1,a_2,\,\cdots,\,a_{2n}$ be an arithmetic progression of positive real numbers with common difference $d$. Let
(1) $a_1^2+a_3^2+\cdots+a_{2n-1}^2=x$
(2) $a_2^2+a_4^2+\cdots+a_{2n}^2=y$
(3) $a_n+a_{n+1}=z$
Express $d$ in terms of $x,\,y,\,z,\,n$.
 
Mathematics news on Phys.org
We are given

$\sum_{k=1}^{n} a_{2k-1}^2 = x\cdots(1)$

$\sum_{k=1}^{n} a_{2k}^2 = y\cdots(2)$

Subtract (1) from (2) to get

$\sum_{k=1}^{n} (a_{2k}^2- a_{2k-1}^2) = y-x$

Or $\sum_{k=1}^{n} (a_{2k}- a_{2k-1})(a_{2k} + a_{2k-1}) = y-x$

But $(a_{2k}- a_{2k-1}= d)$ common difference so we get

$\sum_{k=1}^{n} d(a_{2k} + a_{2k-1}) = y-x$Or $d \sum_{k=1}^{n} (a_{2k} + a_{2k-1}) = y-x$Or $d \sum_{k=1}^{2n} (a_{k}) = y-x\cdots(3)$As $a_k = a_1 + (k-1) d$ for any k so we have$a_k + a_{2n+1-k} = a_1 + (k-1)d + a_1 + (2n+1-k-1)d = 2a_1 + (2n-1) d = = a_1 + a_1 + (2n-1) d = a_1 + a_{2n}$So $a_n + a_{n+1}d = a_1 + a_{2n} = z$So $a_k + a_{2n+1-k} = z$So$d \sum_{k=1}^{2n} (a_{k}) $
$= d \sum_{k=1}^{n} (a_{k} + a_{2n+1-k})$
$= d \sum_{k=1}^{n} z$
= dnz

So $dnz = y-x$

Or $d = \frac{y-x}{nz}$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top