Arithmetic Sequence: Definition & Examples

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Arithmetic Sequence
Click For Summary
SUMMARY

The discussion focuses on the derivation of the relationship between the ratios of segments in a vector geometry context, specifically showing that the parameters λ, μ, and ν are in arithmetic progression. The solution utilizes vector notation and collinearity conditions to establish the equation λ - 2μ + ν = 0. This conclusion is reached through systematic algebraic manipulation of vector equations, confirming the arithmetic sequence property among the defined ratios.

PREREQUISITES
  • Understanding of vector geometry concepts
  • Familiarity with algebraic manipulation of equations
  • Knowledge of collinearity in geometric contexts
  • Basic understanding of arithmetic sequences and their properties
NEXT STEPS
  • Study vector geometry applications in problem-solving
  • Learn about collinearity conditions in geometry
  • Explore algebraic methods for solving equations involving multiple variables
  • Investigate further examples of arithmetic sequences in various mathematical contexts
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying vector geometry or arithmetic sequences will benefit from this discussion.

Albert1
Messages
1,221
Reaction score
0

Attachments

  • arithmetic sequence.jpg
    arithmetic sequence.jpg
    19.2 KB · Views: 134
Mathematics news on Phys.org
Re: arithmetic sequence

Here is my solution:

I chose to use a coordinate geometry approach. Please refer to the following diagram:

View attachment 1742

The following line segments lie along the lines:

$$\overline{AB}\implies y=\frac{y_a}{x_a}x$$

$$\overline{AM}\implies y=\frac{y_a(x-M)}{x_a-M}$$

$$\overline{AC}\implies y=\frac{y_a(x-2M)}{x_a-2M}$$

And let line $\ell_1$ be given by $$y=mx+b$$ where $$0\le b$$.

And so we find the coordinates of the following points:

$$P\implies \left(\frac{bx_a}{y_a-mx_a},\frac{by_a}{y_a-mx_a} \right)$$

$$N\implies \left(\frac{b\left(x_a-M \right)+My_a}{y_a-m\left(x_a-M \right)},\frac{y_a(b+mM)}{y_a-m\left(x_a-M \right)} \right)$$

$$Q\implies \left(\frac{b\left(x_a-2M \right)+2My_a}{y_a-m\left(x_a-2M \right)},\frac{y_a(b+2mM)}{y_a-m\left(x_a-2M \right)} \right)$$

Next, using the distance formula, we find the lengths of the following line segments:

$$\overline{AB}\implies \sqrt{x_a^2+y_a^2}$$

$$\overline{AM}\implies \sqrt{\left(x_a-M \right)^2+y_a^2}$$

$$\overline{AC}\implies \sqrt{\left(x_a-2M \right)^2+y_a^2}$$

$$\overline{AP}\implies \frac{y_a-mx_a-b}{y_a-mx_a}\sqrt{x_a^2+y_a^2}$$

$$\overline{AN}\implies \frac{y_a-mx_a-b}{y_a-m\left(x_a-M \right)}\sqrt{\left(x_a-M \right)^2+y_a^2}$$

$$\overline{AQ}\implies \frac{y_a-mx_a-b}{y_a-m\left(x_a-2M \right)}\sqrt{\left(x_a-2M \right)^2+y_a^2}$$

Now, we find the following ratios:

$$r_1=\frac{\overline{AB}}{\overline{AP}}=\frac{y_a-mx_a}{y_a-mx_a-b}$$

$$r_2=\frac{\overline{AM}}{\overline{AN}}=\frac{y_a-m\left(x_a-M \right)}{y_a-mx_a-b}$$

$$r_3=\frac{\overline{AC}}{\overline{AQ}}=\frac{y_a-m\left(x_a-2M \right)}{y_a-mx_a-b}$$

And so we find:

$$r_1-r_1=r_3-r_2=\frac{mM}{y_a-mx_a-b}$$

And so we may conclude the 3 ratios are an arithmetic progression. This follows from the $x$-coordinates of points $B$, $M$ and $C$ being an arithmetic progression.
 

Attachments

  • albert02.jpg
    albert02.jpg
    9.4 KB · Views: 118
Albert said:
https://www.physicsforums.com/attachments/1741
[sp]This is a generalisation of the problem in http://mathhelpboards.com/geometry-11/vector-geometry-problem-8032.html, and one way to tackle it is by using vector geometry, as Pranav did in that thread.

Let $\lambda = \dfrac{{AB}}{{AP}}$, $\mu = \dfrac{{AM}}{{AN}}$, $\nu = \dfrac{{AC}}{{AQ}}$, $\mathbf{b} = \vec{AB}$ and $\mathbf{c} = \vec{AC}$. Then $$\vec{AP} = \frac1\lambda \mathbf{b},\quad \vec{AN} = \frac1{2\mu}(\mathbf{b} + \mathbf{c}), \quad \vec{AQ} = \frac1\nu\mathbf{c}.$$ The points $P,\ N,\ Q$ are collinear, so $\vec{PN} = \alpha\,\vec{QN}$ for some scalar $\alpha$. Hence $$\frac1{2\mu}(\mathbf{b} + \mathbf{c}) - \frac1\lambda \mathbf{b} = \alpha\Bigl(\frac1{2\mu}(\mathbf{b} + \mathbf{c}) - \frac1\nu\mathbf{c} \Bigr).$$ Compare coefficients of $\mathbf{b}$ and $\mathbf{c}$ to get $$\frac1{2\mu} - \frac1\lambda = \frac{\alpha}{2\mu}, \qquad \frac1{2\mu} = \frac\alpha{2\mu} - \frac{\alpha}{\nu}.$$ Thus $\dfrac1\lambda = -\dfrac{\alpha}{\nu}$ so that $\alpha = -\dfrac\nu\lambda.$ Substitute that into the previous displayed equation to get $$\frac1{2\mu} - \frac1\lambda = -\frac{\nu}{2\lambda\mu}.$$ Clearing fractions, you see that $\lambda - 2\mu + \nu = 0$, which means that $\lambda$, $\mu$ and $\nu$ are in arithmetic progression.[/sp]
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 22 ·
Replies
22
Views
5K