I chose to use a coordinate geometry approach. Please refer to the following diagram:
View attachment 1742
The following line segments lie along the lines:
$$\overline{AB}\implies y=\frac{y_a}{x_a}x$$
$$\overline{AM}\implies y=\frac{y_a(x-M)}{x_a-M}$$
$$\overline{AC}\implies y=\frac{y_a(x-2M)}{x_a-2M}$$
And let line $\ell_1$ be given by $$y=mx+b$$ where $$0\le b$$.
And so we find the coordinates of the following points:
$$P\implies \left(\frac{bx_a}{y_a-mx_a},\frac{by_a}{y_a-mx_a} \right)$$
$$N\implies \left(\frac{b\left(x_a-M \right)+My_a}{y_a-m\left(x_a-M \right)},\frac{y_a(b+mM)}{y_a-m\left(x_a-M \right)} \right)$$
$$Q\implies \left(\frac{b\left(x_a-2M \right)+2My_a}{y_a-m\left(x_a-2M \right)},\frac{y_a(b+2mM)}{y_a-m\left(x_a-2M \right)} \right)$$
Next, using the distance formula, we find the lengths of the following line segments:
$$\overline{AB}\implies \sqrt{x_a^2+y_a^2}$$
$$\overline{AM}\implies \sqrt{\left(x_a-M \right)^2+y_a^2}$$
$$\overline{AC}\implies \sqrt{\left(x_a-2M \right)^2+y_a^2}$$
$$\overline{AP}\implies \frac{y_a-mx_a-b}{y_a-mx_a}\sqrt{x_a^2+y_a^2}$$
$$\overline{AN}\implies \frac{y_a-mx_a-b}{y_a-m\left(x_a-M \right)}\sqrt{\left(x_a-M \right)^2+y_a^2}$$
$$\overline{AQ}\implies \frac{y_a-mx_a-b}{y_a-m\left(x_a-2M \right)}\sqrt{\left(x_a-2M \right)^2+y_a^2}$$
Now, we find the following ratios:
$$r_1=\frac{\overline{AB}}{\overline{AP}}=\frac{y_a-mx_a}{y_a-mx_a-b}$$
$$r_2=\frac{\overline{AM}}{\overline{AN}}=\frac{y_a-m\left(x_a-M \right)}{y_a-mx_a-b}$$
$$r_3=\frac{\overline{AC}}{\overline{AQ}}=\frac{y_a-m\left(x_a-2M \right)}{y_a-mx_a-b}$$
And so we find:
$$r_1-r_1=r_3-r_2=\frac{mM}{y_a-mx_a-b}$$
And so we may conclude the 3 ratios are an arithmetic progression. This follows from the $x$-coordinates of points $B$, $M$ and $C$ being an arithmetic progression.