MHB Arjun's question at Yahoo Answers (Equivalence relation)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Relation
AI Thread Summary
The discussion addresses the equivalence relation defined on a group G with respect to a subgroup H, where two elements a and b are congruent modulo H if a * (b inverse) is in H. It establishes that this relation is reflexive, symmetric, and transitive, thus confirming it as an equivalence relation. The reflexive property is demonstrated by showing that any element a relates to itself since the identity element e is in H. The symmetric property is verified through the relationship between a and b, leading to the conclusion that if a is related to b, then b is related to a. Lastly, the transitive property is proven by combining the relationships among a, b, and c, confirming that if a is related to b and b to c, then a is also related to c.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Let G be a group and H be a subgroup of G. We say that a is congruent to b modulo H if and only if a* (b inverse) is an element of H. Show that congruence modulo H is an equivalence relation on G.

Here is a link to the question:

Equivalence Relation question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Arjun,

Our relation is $a\sim b\Leftrightarrow ab^{-1}\in H$. This is an equivalence relation on $G$.

$(i)$ Reflexive. For all $a\in G$ is verified $aa^{-1}=e$, and $e\in H$ because $H$ is subgroup of $G$, so $a\sim a$.

$(ii)$ Symmetric. Using that $H$ is subgroup, $(xy)^{-1}=y^{-1}x^{-1}$ and $(x^{-1})^{-1}=x$:

$a\sim b\Rightarrow ab^{-1}\in H\Rightarrow (ab^{-1})^{-1}\in H\Rightarrow (b^{-1})^{-1}a^{-1}\in H\Rightarrow ba^{-1}\in H\Rightarrow b\sim a$

$(iii)$ Transitive. $a\sim b$ and $b\sim c$ implies $ab^{-1}\in H$ and $bc^{-1}\in H$. As $H$ is subgroup the product of these elements is in $H$, that is:
$$(ab^{-1})(bc^{-1})=a(b^{-1}b)c^{-1}=aec^{-1}=ac^{-1}\in H$$ which implies $a\sim c$. $\qquad \square$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top