MHB Arjun's question at Yahoo Answers (Equivalence relation)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Relation
AI Thread Summary
The discussion addresses the equivalence relation defined on a group G with respect to a subgroup H, where two elements a and b are congruent modulo H if a * (b inverse) is in H. It establishes that this relation is reflexive, symmetric, and transitive, thus confirming it as an equivalence relation. The reflexive property is demonstrated by showing that any element a relates to itself since the identity element e is in H. The symmetric property is verified through the relationship between a and b, leading to the conclusion that if a is related to b, then b is related to a. Lastly, the transitive property is proven by combining the relationships among a, b, and c, confirming that if a is related to b and b to c, then a is also related to c.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Let G be a group and H be a subgroup of G. We say that a is congruent to b modulo H if and only if a* (b inverse) is an element of H. Show that congruence modulo H is an equivalence relation on G.

Here is a link to the question:

Equivalence Relation question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Arjun,

Our relation is $a\sim b\Leftrightarrow ab^{-1}\in H$. This is an equivalence relation on $G$.

$(i)$ Reflexive. For all $a\in G$ is verified $aa^{-1}=e$, and $e\in H$ because $H$ is subgroup of $G$, so $a\sim a$.

$(ii)$ Symmetric. Using that $H$ is subgroup, $(xy)^{-1}=y^{-1}x^{-1}$ and $(x^{-1})^{-1}=x$:

$a\sim b\Rightarrow ab^{-1}\in H\Rightarrow (ab^{-1})^{-1}\in H\Rightarrow (b^{-1})^{-1}a^{-1}\in H\Rightarrow ba^{-1}\in H\Rightarrow b\sim a$

$(iii)$ Transitive. $a\sim b$ and $b\sim c$ implies $ab^{-1}\in H$ and $bc^{-1}\in H$. As $H$ is subgroup the product of these elements is in $H$, that is:
$$(ab^{-1})(bc^{-1})=a(b^{-1}b)c^{-1}=aec^{-1}=ac^{-1}\in H$$ which implies $a\sim c$. $\qquad \square$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top