[ASK] Addition of Fractions: 1/3+1/6+1/10+1/15+1/21+....+1/231

  • Context: MHB 
  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Addition Fractions
Click For Summary

Discussion Overview

The discussion revolves around the summation of a series of fractions: $$\frac13+\frac16+\frac1{10}+\frac1{15}+\frac1{21}+...+\frac1{231}$$. Participants explore methods to evaluate this sum, particularly in the context of middle school mathematics, where concepts of sequences and series may not yet be fully introduced.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Homework-related
  • Debate/contested

Main Points Raised

  • One participant suggests that the series can be interpreted as $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4}+\ldots+\frac1{231}$$ and questions how to approach solving it given the audience's level of understanding.
  • Another participant proposes that a bright middle school student might recognize that the sum of the first n integers is given by $$1+2+\ldots+n = \frac12n(n+1)$$ and deduces that for the last term to equal 231, n must be 21.
  • Subsequent calculations of partial sums are presented, revealing a potential pattern in the results of these sums, leading to a conjectured final value of $$\frac{10}{11}$$.
  • A different method is introduced by another participant, involving telescoping sums and fraction decomposition, which also leads to the conclusion that the sum evaluates to $$\frac{10}{11}$$, while emphasizing the importance of determining n through either solving an equation or trial and error.
  • One participant expresses understanding of the methods discussed, indicating that the explanations were helpful.

Areas of Agreement / Disagreement

Participants generally agree on the methods to approach the problem and arrive at the same conclusion regarding the sum, though the discussion includes different techniques and reasoning processes. There is no explicit consensus on a single method being superior, as multiple approaches are explored.

Contextual Notes

The discussion assumes familiarity with basic algebra and summation techniques, but acknowledges that the target audience (7th graders) may not have been exposed to these concepts in depth. Some mathematical steps and assumptions are left unresolved, particularly regarding the derivation of the final sum.

Monoxdifly
MHB
Messages
288
Reaction score
0
Determine the value of $$\frac13+\frac16+\frac1{10}+\frac1{15}+\frac1{21}+...+\frac1{231}$$
I know that it means $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4}+\frac1{1+2+3+4+5}+\frac1{1+2+3+4+5+6}+...+\frac1{231}$$, but how do I answer? It's from a student worksheet for 7th graders, so they haven't learned about sequence and series yet. Granted, the book also says that the question was from a middle school-level math contest.
 
Mathematics news on Phys.org
Monoxdifly said:
Determine the value of $$\frac13+\frac16+\frac1{10}+\frac1{15}+\frac1{21}+...+\frac1{231}$$
I know that it means $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4}+\frac1{1+2+3+4+5}+\frac1{1+2+3+4+5+6}+...+\frac1{231}$$, but how do I answer? It's from a student worksheet for 7th graders, so they haven't learned about sequence and series yet. Granted, the book also says that the question was from a middle school-level math contest.
A 7th grader should start by asking how $\dfrac1{231}$ fits into the series of terms $\dfrac1{1+2+\ldots + n}$. A bright student like a middle school math contestant should probably know that $1+2+\ldots + n = \frac12n(n+1)$. If that is equal to $231$ then $n(n+1) = 462$, from which it's not hard to see that $n=21$.

So we want to find the sum $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4}+ \ldots +\frac1{1+2+3+4+ \ldots +21}$$.

Start by summing the first few terms, adding one more term to the previous sum each time: $$\frac1{1+2} = \frac13,$$ $$\frac1{1+2}+\frac1{1+2+3} = \frac13 + \frac16 = \frac36 = \frac12,$$ $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4} = \frac12 + \frac1{10} = \frac6{10} = \frac35,$$ $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4}+\frac1{1+2+3+4+5} = \frac35 + \frac1{15} = \frac{10}{15} = \frac23,$$ $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4}+\frac1{1+2+3+4+5}+\frac1{1+2+3+4+5+6} = \frac23 + \frac1{21} = \frac{15}{21} = \frac57.$$ At this point, a bright 7th grader ought to spot a pattern in these partial sums $$\frac1{1+{\color{red}2}} = \color{red}\frac13,$$ $$\frac1{1+2}+\frac1{1+2+{\color{red}3}} = \frac12 = \color{red}\frac24,$$ $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+{\color{red}4}} = \color{red}\frac35,$$ $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4}+\frac1{1+2+3+4+{\color{red}5}} = \frac23 = \color{red}\frac46,$$ $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4}+\frac1{1+2+3+4+5}+\frac1{1+2+3+4+5+{\color{red}6}} = \color{red}\frac57,$$ and jump to the (corrrect) conclusion that $$\frac1{1+2}+\frac1{1+2+3}+\frac1{1+2+3+4}+ \ldots +\frac1{1+2+3+4+ \ldots + {\color{red}21}} = {\color{red}\frac {20}{22}} = \frac{10}{11}$$.

I think it would be asking too much of a 7th grader to do any more than that. But a user of this forum ought to be able to use induction to prove the result that $$\sum_{n=2}^N \frac1{1+2+\ldots+n} = \frac{N-1}{N+1}.$$
 
Indeed. A standard trick for high school math contests is to start with one term, then two terms, and so on, and try to spot a pattern. Then generalize the pattern, and fill in the final value.
And yes, it requires a bit of a jump to spot the pattern that Opalg pointed out.

Anyway, I'd like to point out a different method that should be within reach of high schoolers, which admittedly does become a bit easier with knowledge of and familiarity with fractions in general, arithmetic sequences, telescoping sums, and fraction decomposition.
If finds Opalg's formula directly rather than spotting the pattern and proving it by induction.

Let $n$ be such that $1+2+\ldots+n = 231$, then:
$$
\begin{aligned}
\frac 13 + \frac 16 + \frac 1{10}+\ldots+ \frac 1{231}
&= \frac 1{1+2} + \frac 1{1+2+3} + \frac 1{1+2+3+4}+\ldots+ \frac 1{1+2+\ldots+n} \\
&= \frac 1{\frac 12\cdot 2(1+2)} + \frac 1{\frac 12\cdot 3(1+3)} + \frac 1{\frac 12\cdot 4(1+4)}+\ldots+ \frac 1{\frac 12\cdot n(1+n)} \\
&= 2\Bigg(\frac 1{2\cdot 3} + \frac 1{3\cdot 4} + \frac 1{4\cdot 5}+\ldots+ \frac 1{n(n+1)}\Bigg) \\
&= 2\Bigg(\left(\frac 12-\frac 13\right) + \left(\frac 13-\frac 14\right) + \left(\frac 14-\frac 15\right)+\ldots+ \left(\frac 1n-\frac 1{n+1}\right)\Bigg) \\
&= 2\Bigg(\frac 12-\frac 1{n+1}\Bigg) \\
&= \frac {n-1}{n+1}
\end{aligned}
$$
That leaves figuring out what $n$ is.
We can solve the equation, or we can just use trial and error to find that $n=21$. Indeed $\frac 12\cdot 21(1+21) = 231$.

So the sum is:
$$\frac 13 + \frac 16 + \frac 1{10}+\ldots+ \frac 1{231}=\frac {21-1}{21+1}=\frac{10}{11}$$
 
I think I get it now. Thanks to both of you.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
Replies
9
Views
3K