intervoxel
- 192
- 1
I have a three term recurrence relation
<br /> \[<br /> a_0=1,<br /> \]<br /> \[<br /> a_1=p_1(1)a_0,<br /> \]<br /> \begin{equation}\label{recurr}<br /> \begin{array}{ccc}<br /> a_{n}=p_1(n) a_{n-1}+p_2(n) a_{n-2}, && n\ge2.\\<br /> \end{array}<br /> \end{equation}<br /> <br />
where
<br /> \[<br /> p_1(n)=\frac{\delta^2/\alpha\gamma}{(n+k)^2-\beta^2/\alpha^2}<br /> \]<br />
and
<br /> \[<br /> p_2(n)=-\frac{1}{(n+k)^2-\beta^2/\alpha^2},<br /> \]<br />
with
<br /> \[<br /> k=\pm\frac{\beta}{\alpha}<br /> \]<br />
I'm interested in the asymptotic behavior of the coefficients
<br /> \[<br /> a_n^{(1)}\sim ?<br /> \]<br />
and
<br /> \[<br /> a_n^{(2)}\sim ?<br /> \]<br />
when
<br /> n\mapsto\infty<br /> <br />
Any ideas?
<br /> \[<br /> a_0=1,<br /> \]<br /> \[<br /> a_1=p_1(1)a_0,<br /> \]<br /> \begin{equation}\label{recurr}<br /> \begin{array}{ccc}<br /> a_{n}=p_1(n) a_{n-1}+p_2(n) a_{n-2}, && n\ge2.\\<br /> \end{array}<br /> \end{equation}<br /> <br />
where
<br /> \[<br /> p_1(n)=\frac{\delta^2/\alpha\gamma}{(n+k)^2-\beta^2/\alpha^2}<br /> \]<br />
and
<br /> \[<br /> p_2(n)=-\frac{1}{(n+k)^2-\beta^2/\alpha^2},<br /> \]<br />
with
<br /> \[<br /> k=\pm\frac{\beta}{\alpha}<br /> \]<br />
I'm interested in the asymptotic behavior of the coefficients
<br /> \[<br /> a_n^{(1)}\sim ?<br /> \]<br />
and
<br /> \[<br /> a_n^{(2)}\sim ?<br /> \]<br />
when
<br /> n\mapsto\infty<br /> <br />
Any ideas?