Attempted proof of the Contracted Bianchi Identity

Click For Summary
SUMMARY

The forum discussion centers on an attempted proof of the Contracted Bianchi Identity, specifically the equation ##2 R^{mn}_{;n} = g^{mn} R_{;n}##. The proof utilizes the second Bianchi identity ##R_{abmn;l} + R_{ablm;n} + R_{abnl;m} = 0## and involves various tensor manipulations, including contracting indices and summing over terms. The author seeks validation and insights on the correctness of their approach, particularly regarding the manipulation of indices and the validity of their operations.

PREREQUISITES
  • Understanding of tensor calculus and differential geometry
  • Familiarity with the Bianchi identities in Riemannian geometry
  • Knowledge of metric tensors and their properties
  • Experience with index notation and manipulation in tensor equations
NEXT STEPS
  • Study the properties of the second Bianchi identity in detail
  • Explore the implications of the Contracted Bianchi Identity in general relativity
  • Learn about tensor contraction techniques and their applications
  • Investigate common proofs and derivations related to the Bianchi identities
USEFUL FOR

This discussion is beneficial for students and researchers in differential geometry, particularly those interested in the applications of the Bianchi identities in theoretical physics and general relativity.

Vanilla Gorilla
Messages
78
Reaction score
24
TL;DR
I constructed an attempted proof of the Contracted Bianchi Identity, and cannot identify any errors myself. However, obviously, this does not mean that the proof is watertight. For any errors present, I am hoping to get details and explanations on where I went wrong, how to avoid the mistake in the future, etc.
Criticism welcome!
My Attempted Proof
##R^{mn}_{;n} - \frac {1} {2} g^{mn} R_{;n} = 0##
##R^{mn}_{;n} = \frac {1} {2} g^{mn} R_{;n}##
So, we want ##2 R^{mn}_{;n} = g^{mn} R_{;n} ##

Start w/ 2nd Bianchi Identity ##R_{abmn;l} + R_{ablm;n} + R_{abnl;m} = 0##
Sum w/ inverse metric tensor twice ##g^{bn} g^{am} (R_{abmn;l} + R_{ablm;n} + R_{abnl;m}) = g^{bn} g^{am} (0)##
Distributing ##g^{bn} (g^{am} R_{abmn;l} + g^{am} R_{ablm;n} + g^{am} R_{abnl;m}) = 0##
Index manipulating ##g^{bn} (R^{m}_{~~~bmn;l} + R^{m}_{~~~blm;n} + R^{m}_{~~~bnl;m}) = 0##
Contracting ##g^{bn} (R_{bn;l} - R_{bl;n} + R^{m}_{~~~bnl;m}) = 0##
Distributing and manipulating indices ## R^n_{n;l} - R^n_{l;n} + g^{bn} R^{m}_{~~~bnl;m} = 0##
Summing ##R_{;l} - R^n_{l;n} + g^{bn} R^{m}_{~~~bnl;m} = 0##
Sum W/ ##g^{lp}##: ##g^{lp} (R_{;l} - R^n_{l;n} + g^{bn} R^{m}_{~~~bnl;m} = 0##
Distributing ##g^{lp} R_{;l} - g^{lp} R^n_{l;n} + g^{lp} g^{bn} R^{m}_{~~~bnl;m} = 0##
Summing ##g^{lp} R_{;l} - R^{np}_{;n} + g^{lp} g^{bn} R^{m}_{~~~bnl;m} = 0##
Ricci Tensor (downstairs indices is symmetric, so I THINK it is valid to flip the 2 top indices here ##g^{lp} R_{;l} - R^{pn}_{;n} + g^{lp} g^{bn} R^{m}_{~~~bnl;m} = 0##
##g^{lp} R_{;l} + g^{lp} g^{bn} R^{m}_{~~~bnl;m} = R^{pn}_{;n}## becomes ##R^{pn}_{;n} = g^{lp} R_{;l} + g^{lp} g^{bn} R^{m}_{~~~bnl;m}##
##R^{pn}_{;n} = g^{lp} R_{;l} - g^{lp} g^{bn} R^{m}_{~~~bln;m}##
##R^{pn}_{;n} = g^{lp} R_{;l} - R^{mnp}_{~~~~~~~~n;m}##
##R^{pn}_{;n} + R^{mnp}_{~~~~~~~~n;m} = g^{lp} R_{;l} ##
The metric tensor and its inverse are symmetric ##R^{pn}_{;n} + R^{mnp}_{~~~~~~~~n;m} = g^{pl} R_{;l} ##
Summing over ##n##, ##R^{pn}_{;n} + R^{mp}_{;m} = g^{pl} R_{;l} ##
I've seen others just replace indices like I am about to, so I am about 60% sure the following operation is valid. However, I am not sure. Any insight and corrections would be much appreciated here especially! ##R^{mn}_{;n} + R^{mn}_{;m} = g^{mn} R_{;n} ##
Combining like terms ##2 R^{mn}_{;n} = g^{mn} R_{;n} ##, which is just the result we're looking for, assuming I did it right.

Any help is much appreciated!
P.S., I'm not always great at articulating my thoughts, so my apologies if this question isn't clear. Also, I know this isn't high school material, but I am currently in high school, which is why I made my level "Basic/high school level."
Lastly, I know that this isn't the typical way one would go about proving this identity, but I was wondering if this was still a valid avenue to do so (I did it from scratch).
 
Physics news on Phys.org
Moderator's note: Thread moved to the Differential Geometry forum.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 42 ·
2
Replies
42
Views
9K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
13K
  • · Replies 20 ·
Replies
20
Views
5K