High School Attempted proof of the Contracted Bianchi Identity

Click For Summary
The discussion centers on an attempted proof of the contracted Bianchi identity, starting from the second Bianchi identity and manipulating indices and metrics to derive the desired result. The author outlines their step-by-step approach, including the use of the Ricci tensor's symmetry and various contractions, ultimately aiming to show that 2 R^{mn}_{;n} equals g^{mn} R_{;n}. They express uncertainty about the validity of certain index manipulations and seek feedback on their methodology. The author acknowledges their high school level of understanding and is open to corrections or insights from more experienced participants.
Vanilla Gorilla
Messages
78
Reaction score
24
TL;DR
I constructed an attempted proof of the Contracted Bianchi Identity, and cannot identify any errors myself. However, obviously, this does not mean that the proof is watertight. For any errors present, I am hoping to get details and explanations on where I went wrong, how to avoid the mistake in the future, etc.
Criticism welcome!
My Attempted Proof
##R^{mn}_{;n} - \frac {1} {2} g^{mn} R_{;n} = 0##
##R^{mn}_{;n} = \frac {1} {2} g^{mn} R_{;n}##
So, we want ##2 R^{mn}_{;n} = g^{mn} R_{;n} ##

Start w/ 2nd Bianchi Identity ##R_{abmn;l} + R_{ablm;n} + R_{abnl;m} = 0##
Sum w/ inverse metric tensor twice ##g^{bn} g^{am} (R_{abmn;l} + R_{ablm;n} + R_{abnl;m}) = g^{bn} g^{am} (0)##
Distributing ##g^{bn} (g^{am} R_{abmn;l} + g^{am} R_{ablm;n} + g^{am} R_{abnl;m}) = 0##
Index manipulating ##g^{bn} (R^{m}_{~~~bmn;l} + R^{m}_{~~~blm;n} + R^{m}_{~~~bnl;m}) = 0##
Contracting ##g^{bn} (R_{bn;l} - R_{bl;n} + R^{m}_{~~~bnl;m}) = 0##
Distributing and manipulating indices ## R^n_{n;l} - R^n_{l;n} + g^{bn} R^{m}_{~~~bnl;m} = 0##
Summing ##R_{;l} - R^n_{l;n} + g^{bn} R^{m}_{~~~bnl;m} = 0##
Sum W/ ##g^{lp}##: ##g^{lp} (R_{;l} - R^n_{l;n} + g^{bn} R^{m}_{~~~bnl;m} = 0##
Distributing ##g^{lp} R_{;l} - g^{lp} R^n_{l;n} + g^{lp} g^{bn} R^{m}_{~~~bnl;m} = 0##
Summing ##g^{lp} R_{;l} - R^{np}_{;n} + g^{lp} g^{bn} R^{m}_{~~~bnl;m} = 0##
Ricci Tensor (downstairs indices is symmetric, so I THINK it is valid to flip the 2 top indices here ##g^{lp} R_{;l} - R^{pn}_{;n} + g^{lp} g^{bn} R^{m}_{~~~bnl;m} = 0##
##g^{lp} R_{;l} + g^{lp} g^{bn} R^{m}_{~~~bnl;m} = R^{pn}_{;n}## becomes ##R^{pn}_{;n} = g^{lp} R_{;l} + g^{lp} g^{bn} R^{m}_{~~~bnl;m}##
##R^{pn}_{;n} = g^{lp} R_{;l} - g^{lp} g^{bn} R^{m}_{~~~bln;m}##
##R^{pn}_{;n} = g^{lp} R_{;l} - R^{mnp}_{~~~~~~~~n;m}##
##R^{pn}_{;n} + R^{mnp}_{~~~~~~~~n;m} = g^{lp} R_{;l} ##
The metric tensor and its inverse are symmetric ##R^{pn}_{;n} + R^{mnp}_{~~~~~~~~n;m} = g^{pl} R_{;l} ##
Summing over ##n##, ##R^{pn}_{;n} + R^{mp}_{;m} = g^{pl} R_{;l} ##
I've seen others just replace indices like I am about to, so I am about 60% sure the following operation is valid. However, I am not sure. Any insight and corrections would be much appreciated here especially! ##R^{mn}_{;n} + R^{mn}_{;m} = g^{mn} R_{;n} ##
Combining like terms ##2 R^{mn}_{;n} = g^{mn} R_{;n} ##, which is just the result we're looking for, assuming I did it right.

Any help is much appreciated!
P.S., I'm not always great at articulating my thoughts, so my apologies if this question isn't clear. Also, I know this isn't high school material, but I am currently in high school, which is why I made my level "Basic/high school level."
Lastly, I know that this isn't the typical way one would go about proving this identity, but I was wondering if this was still a valid avenue to do so (I did it from scratch).
 
Physics news on Phys.org
Moderator's note: Thread moved to the Differential Geometry forum.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 42 ·
2
Replies
42
Views
9K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
13K
Replies
20
Views
5K