Avoid unpleasant integrals in solving IVP

Click For Summary
SUMMARY

The discussion focuses on solving initial value problems (IVP) for linear inhomogeneous ordinary differential equations (ODEs) using fundamental matrices. The general solution is expressed as \(y(t) = R_1(t) \int K_n(t) f(t) dt\), where \(R_1(t)\) is derived from the fundamental matrix \(F(t)\) of the corresponding homogeneous system. The specific example provided is the second-order ODE \(t^2y'' - 2ty' + 2y = t^2\sin{t^4}\), with the homogeneous solution \(y_h(t) = Ct + Dt^2\). The discussion concludes with a proposed formula for the particular solution of an \(n\)th order linear ODE with initial values, emphasizing the use of definite integrals to avoid computing indefinite integrals.

PREREQUISITES
  • Understanding of linear inhomogeneous systems of ODEs
  • Familiarity with fundamental matrices in the context of differential equations
  • Knowledge of Euler equations and their solutions
  • Proficiency in computing definite integrals and their applications in IVPs
NEXT STEPS
  • Study the properties of fundamental matrices in linear ODEs
  • Learn about the method of variation of parameters for solving inhomogeneous ODEs
  • Explore the application of Laplace transforms in solving IVPs
  • Investigate numerical methods for approximating solutions to ODEs
USEFUL FOR

Mathematicians, engineers, and students specializing in differential equations, particularly those dealing with initial value problems and linear systems.

psie
Messages
315
Reaction score
40
Homework Statement
Solve ##t^2y''-2ty'+2y=t^2\sin{t^4}, t>0## with initial values ##y(1)=2, y'(1)=5##.
Relevant Equations
See first two paragraphs below.
The formula I'm given is that the general solution to a linear inhomogeneous system ##x'(t)=A(t)x(t)+b(t)## is ##x(t)=F(t)\int F^{-1}(t)b(t)dt##, where ##F(t)## is the fundamental matrix to the linear homogenous system (here ##A(t)## is an ##n\times n## matrix function and ##b(t)## and ##n\times 1## matrix function, both continuous in some interval ##I\subset \mathbb R##).

Since a linear ##n##th order ODE ##y^{(n)}(t)+a_{n-1}(t)y^{(n-1)}(t)+\ldots +a_0(t)y(t)=f(t)## can be reduced to a system, the corresponding solution is ##y(t)=R_1 (t)\int K_n(t)f(t)dt##, where ##R_1(t)## is the first row of the fundamental matrix ##F(t)## and ##K_n(t)## the last column of the inverse of the fundamental matrix ##F^{-1}(t)##.

So here we are given the linear, second order ODE $$t^2y''-2ty'+2y=t^2\sin{t^4}.\tag1$$The homogeneous equation is a so-called Euler equation, i.e. of the form ##t^ny^{(n)}(t)+a_{n-1}t^{n-1}y^{(n-1)}(t)+\ldots+a_1ty'(t)+a_0y(t)=0##, where ##a_{n-1},\ldots,a_0## are constants (see Wikipedia). I will omit the details, but the general solution to the homogeneous equation of ##(1)## is $$y_h(t)=Ct+Dt^2.$$ From this we can construct the fundamental matrix and compute its inverse. It is $$F(t)=\begin{bmatrix}
t&t^2\\
1&2t
\end{bmatrix}\qquad F^{-1}(t)=\begin{bmatrix}
2/t&-1\\
-1/t^2&1/t
\end{bmatrix}.$$
So using the formula of the general solution to a linear ##n##th order ODE, i.e. ##y(t)=R_1 (t)\int K_n(t)f(t)dt##, we have $$y(t)=t\int (-\sin{t^4})dt+t^2\int \frac{\sin{t^4}}{t}dt.$$ We can define ##G(t)+C=\int (-\sin{t^4})dt## and ##H(t)+D=\int \frac{\sin{t^4}}{t}dt##, and we get $$y(t)=Ct+Dt^2+G(t)t+H(t)t^2.$$ But here I'm stuck, i.e. I do not know how check the initial values and find the solution to the IVP. Is there a way to avoid having to compute the integrals?
 
Physics news on Phys.org
Do not use indefinite integrals here. Always fix a lower limit; the point at which the initial value is specified is convenient. This paritcular solution therefore vanishes at this point, leaving the coefficients of the homogenous solutions to satisfy the initial condition. I would therefore define \begin{split}<br /> G(t) &amp;= \int_1^t \sin u^4 \,du \\<br /> H(t) &amp;= \int_1^t \frac{\sin u^4}{u} \,du \end{split} so that G(1) = H(1) = 0. Then \begin{split}<br /> y(x) &amp;= Ct + Dt^2 - tG(t) + t^2H(t) \\<br /> y&#039;(x) &amp;= C + 2Dt - G(t) - t\sin t^4 + 2tH(t) + t\sin t^4 \\<br /> &amp;= C + 2Dt - G(t) + 2tH(t).\end{split}
 
  • Like
Likes   Reactions: psie
Is there a formula (I would assume in terms of the fundamental matrix) for the particular solution of an ##n##th order linear ODE with any initial values?

Following my reasoning above, I would assume it would read $$y_p(t)=R_1 (t)\int_{t_0}^t K_n(u)f(u)du,$$ where ##R_1## is the first row of the fundamental matrix and ##K_n## the last column of the inverse of the fundamental matrix, but I'm not sure.
 
Last edited:
I'd be very grateful if someone could confirm the following.

In #1 I gave the solution to an inhomogeneous system, namely $$x(t)=F(t)\int (F(t))^{-1}b(t)dt.$$ Using definite integrals, i.e. we have some initial condition ##x(t_0)=x_0##, the above solution reads $$x(t)=F(t)(F(t_0))^{-1}x_0+F(t)\int_{t_0}^t (F(u))^{-1}b(u)du.$$ Now, the solution to the scalar ##n##th order linear ODE should just be the first component of ##x(t)##, meaning only the first component of ##F(t)(F(t_0))^{-1}x_0## and first component of ##F(t)\int_{t_0}^t (F(u))^{-1}b(u)du##. So the solution ##y(t)## of the scalar ##n##th order linear ODE, with initial values ##(y(t_0),\ldots,y^{(n-1)}(t_0))=x_0##, reads $$y(t)=P_1(t,t_0)x_0+R_1 (t)\int_{t_0}^t K_n(u)b(u)du,$$ where ##P_1(t,t_0)## is the first row of ##F(t)(F(t_0))^{-1}##, ##R_1(t)## the first row of ##F(t)## and ##K_n(u)## the ##n##th column of ##(F(u))^{-1}##.
 
Last edited:

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K