Bacterial cytoplasm has glass-like properties

  • Thread starter Thread starter Pythagorean
  • Start date Start date
  • Tags Tags
    Properties
AI Thread Summary
The discussion focuses on the physical properties of bacterial cytoplasm, highlighting its complex behavior that resembles glass-forming liquids. Research shows that the cytoplasm transitions from liquid-like to solid-like states based on the size of components, with larger particles experiencing greater motion constraints. Notably, cellular metabolism plays a crucial role in fluidizing the cytoplasm, enabling larger components to navigate more freely, which is significant during shifts between active and dormant states in response to environmental changes. This understanding enhances insights into bacterial dormancy and overall physiology, particularly how the cytoplasm's glassy behavior affects intracellular processes. Additionally, the conversation touches on the importance of metabolic modifications, such as O-glcnac, which influence cytoskeletal properties and are linked to various cellular functions and states, including cancer and stem cell differentiation. The potential for bacteria to utilize O-glcnac modifications is also raised as a point of interest.
Pythagorean
Science Advisor
Messages
4,416
Reaction score
327
The physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size. Remarkably, cellular metabolism fluidizes the cytoplasm, allowing larger components to escape their local environment and explore larger regions of the cytoplasm. Consequently, cytoplasmic fluidity and dynamics dramatically change as cells shift between metabolically active and dormant states in response to fluctuating environments. Our findings provide insight into bacterial dormancy and have broad implications to our understanding of bacterial physiology, as the glassy behavior of the cytoplasm impacts all intracellular processes involving large components.

http://www.cell.com/abstract/S0092-8674(13)01479-7
 
Biology news on Phys.org
Meant to thank you for pointing this paper out a while back, but I've been distracted lately.

I'd always been a bit frustrated with the "slightly salty lipid-enclosed bag of enzymes" approach that many go with for simplicity, but I think things are starting to turn around on this point. People are appreciating the role of membrane organization and sequestration, and of macromolecular crowding, and so on.

:thumbs:
 
As it seems I'm the only person that specializes in glycobiology, one way that cells can modify the physical properties of their cytoskeleton through metabolism is through the all important O-glcnac modification (at least in mammalian cells), which has been known for a while:

http://www.jbc.org/content/275/38/29179.short

Talin, vaniculin, synapsins, and many proteins involved with regulation of tubulin and actin are modified by O-glcnac.

You could write an entire textbook on the O-glcnac modification and its importance to all of life, but long story short: the O-glcnac modification is one of the end products of glycolysis. In otherwords, both the O-glcnac modification as well as the massive amount of proteins that are O-glcnac modified (such as the many proteins involved in cytoskeletal organization and regulation) are absolutely linked to the metabolic states of cells.

You constantly read about the abnormal metabolic states in cancer with subsquently abberrant signaling cascades, how stem cells differentiate based on their metabolic states, and in this case, how the cytoplasm's physical properties are a function of metabolism. Well, one way to explain all of these observations is that glycolytic metabolism is inherently linked to the master control mechanism of the O-glcnac modification which differentially responds to environmental cues/stress.

It would be interesting to see if the bacteria they use is capable of the O-glcnac modification.
 
Last edited:
Chagas disease, long considered only a threat abroad, is established in California and the Southern U.S. According to articles in the Los Angeles Times, "Chagas disease, long considered only a threat abroad, is established in California and the Southern U.S.", and "Kissing bugs bring deadly disease to California". LA Times requires a subscription. Related article -...
I am reading Nicholas Wade's book A Troublesome Inheritance. Please let's not make this thread a critique about the merits or demerits of the book. This thread is my attempt to understanding the evidence that Natural Selection in the human genome was recent and regional. On Page 103 of A Troublesome Inheritance, Wade writes the following: "The regional nature of selection was first made evident in a genomewide scan undertaken by Jonathan Pritchard, a population geneticist at the...
I use ethanol for cleaning glassware and resin 3D prints. The glassware is sometimes used for food. If possible, I'd prefer to only keep one grade of ethanol on hand. I've made sugar mash, but that is hardly the least expensive feedstock for ethanol. I had given some thought to using wheat flour, and for this I would need a source for amylase enzyme (relevant data, but not the core question). I am now considering animal feed that I have access to for 20 cents per pound. This is a...
Back
Top