Ballistic Pendulum Problem: Determining Speeds of Bullet and Block

AI Thread Summary
The discussion focuses on solving a ballistic pendulum problem involving a bullet and a block of wood. The key points include using conservation of momentum to determine the speed of the block after the bullet exits, as energy conservation does not apply during the bullet's penetration. The user calculates the block's speed using the formula m1v1 = m2v2, leading to a block speed of approximately 0.67 m/s. Additionally, the kinetic energy of the block at its maximum height is equated to potential energy to find the bullet's initial speed. The overall approach combines momentum conservation for the bullet-block interaction and energy conservation for the block's subsequent motion.
ges9503
Messages
3
Reaction score
0

Homework Statement


I fire a bullet at a ballistic pendulum. The large block of wood has a mass M2 = 3.000 kg, and the bullet has a mass of m1 = 25.0 g. The bullet completely penetrates the wood and emerges with a speed of vf = 80.0 m/s. The wood, as part of a pendulum, swings up to a maximum height of h = 10.00 cm.
(a) Determine the speed of the block of wood after the bullet has passed through it.
(b) What is the speed of the bullet just before it hits the block?


Homework Equations


m1v1=m2v2
1/2mv^2]= KE
mgh=PE



The Attempt at a Solution



I thought that setting the momentum of the bullet after it has exited the block equal to the momentum of the block at the maximum height would be the correct procedure to find the speed of the block , but I am wrong. How do I approach this problem? Convervation of energy or conservation of momentum? Or both?
Thanks :)
 
Physics news on Phys.org
The bullet losses energy inside the block by drilling a hole through it. You can not use conservation of energy for the interaction between the bullet and block, but conservation of momentum is valid. After the bullet left the block, the block moves as a simple pendulum. Conservation of energy is valid for this motion.

ehild
 
Ok, so you said that I can use conservation of momentum for the interaction between the bullet and block. So is it correct to find the speed of the block using
m1v1=m2v2
(m1v1)/m2=v2

(.025kg*80m/s)/3kg

v2= .66666667 m/s
?
 
Initial momentum of the bullet = final momentum of the bullet + momentum of block.

0.025 kg*v(bullet)=3.0*v(block)+0.025*80.0

When the bullet leaves the block, the block has v(block) speed, so its KE is:

KE=0.5 *3.0*v(block)^2

This turns into potential energy at the highest position:

3.0*g*0.1=KE

You get KE from the maximum height; from KE, you get the initial speed of the block; from that, you get the initial velocity of the bullet.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top