For the past few weeks, I have been searching about this topic: Suppose we are given a convex polytope having vertices say \begin{equation} A_1, A_2,...,A_n \end{equation} where each \begin{equation}A_i, i=1,...,n \end{equation} represent a matrix - Infact its a convex polytope whose vertices are matrices. How can we verify if a given a matrix say \begin{equation} A_t \end{equation} can be written as a convex combination of the vertices.(adsbygoogle = window.adsbygoogle || []).push({});

To elaborate more: I am constructing this polytope to encompass a time-varying matrix; say denoted by A(t) where the variable "t" is varying between some upper and lower bounds t_{min} and t_{max}. Using these bounds of t, I find vertices for a polytope denoted by \begin{equation}A_1,...,A_n \end{equation}. Now how do I prove that given A(t) where \begin{equation}t_min \leq t \leq t_max \end{equation} can be written as convex combination of the vertices \begin{equation}A_1,...,A_n \end{equation}. Any help would be appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Barrycentric coordinates for a polytope

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**