Bases for Vector Space V=\mathbb{R}^3

  • Thread starter Thread starter Ted123
  • Start date Start date
  • Tags Tags
    Bases
Ted123
Messages
428
Reaction score
0

Homework Statement



Which of the following sets S are bases for the vector space V=\mathbb{R}^3?

(a) S=\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}

(b) S=\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}

(c) S=\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} , \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}

(d) S=\left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} , \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}

The Attempt at a Solution



By my reckoning, the only set that isn't a basis is (b) as it isn't linearly independent and \text{Span}(S)\neq V. Correct?
 
Physics news on Phys.org
Since there are only 3 and the dimension of R3 is 3, you are correct that whether or not they are linearly independent determines whether they are a spanning set (basis).
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top