What is the Fundamental Period of a Function with a Given Derivative?

  • Thread starter Thread starter Krushnaraj Pandya
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
The discussion revolves around finding the fundamental period of a function f(x) given its derivative as (0.5 - sin^2x)/f(x). Participants clarify that the fundamental period refers to the periodicity of the function, similar to known functions like sin(x). The integration of the derivative leads to the conclusion that f(x)^2 equals sin(2x)/2. Ultimately, this results in the determination that the fundamental period of f(x) is π. The problem-solving process emphasizes the importance of understanding the relationship between the function and its derivative.
Krushnaraj Pandya
Gold Member
Messages
697
Reaction score
73

Homework Statement


If the derivative of f(x) w.r.t x is (0.5- sin^2x)/f(x) then fundamental period of f(x) is
2. The attempt at a solution
I wrote 1/2-sin^2x as cos2x/2. since f'(x)=cos2x/2f(x) its integral will be f(x), I would be grateful is someone could provide intuition on how to proceed further
 
Physics news on Phys.org
What is "fundamental period"? Can you please provide the problem statement exactly as written down (or at least translated as good as you can), since it does not give information about ##f##.
 
Krushnaraj Pandya said:

Homework Statement


If the derivative of f(x) w.r.t x is (0.5- sin^2x)/f(x) then fundamental period of f(x) is
2. The attempt at a solution
I wrote 1/2-sin^2x as cos2x/2. since f'(x)=cos2x/2f(x) its integral will be f(x), I would be grateful is someone could provide intuition on how to proceed further

So: ##2 f(x) f'(x) = \cos(2x),## and you should recognize that ##2 f(x) f'(x)## is the derivative of some function ##F(x)## that is related to ##f(x)## in some way. That allows you to find ##F(x)## and then, from that, to find ##f(x)##, up to a constant of integration (which will not affect the period, if any).
 
Last edited:
Math_QED said:
What is "fundamental period"? Can you please provide the problem statement exactly as written down (or at least translated as good as you can), since it does not give information about ##f##.

I suspect that the problem should have said "A periodic function ##f(x)## satisfies the equation ##f'(x) = (0.5 - \sin^2 x)/f(x).## What is the period of ##f##?"
 
Math_QED said:
What is "fundamental period"? Can you please provide the problem statement exactly as written down (or at least translated as good as you can), since it does not give information about ##f##.
Ray Vickson said:
I suspect that the problem should have said "A periodic function ##f(x)## satisfies the equation ##f'(x) = (0.5 - \sin^2 x)/f(x).## What is the period of ##f##?"
You're interpreting the question correctly, this is a MCQ type question and I have written the statement unaltered- all the data is mentioned. Fundamental period here means the period of the function (e.g 2pi for sinx) etc.Additionally 4 options are provided (but I should be able to get the answer regardless of whether there are options or not) the options are- 1)pi 2)2pi 3)pi/2 4)3pi/2
 
Ray Vickson said:
So: ##2 f(x) f'(x) = \cos(2x),## and you should recognize that ##2 f(x) f'(x)## is the derivative of some function ##F(x)## that is related to ##f(x)## in some way. That allows you to find ##F(x)## and then, from that, to find ##f(x)##, up to a constant of integration (which will not affect the period, if any).
F(x) will be sin(2x)/2, I am trying to equate ∫2f(x)f'(x) with this now to find f(x)...
 
Krushnaraj Pandya said:
F(x) will be sin(2x)/2, I am trying to equate ∫2f(x)f'(x) with this now to find f(x)...
Got it! I integrated by parts and found f(x)^2=sin2x/2, so the answer is pi. Thanks a lot! :)
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
12
Views
6K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
26
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K