LagrangeEuler
- 711
- 22
- Homework Statement
- I want to calculate [tex]D(\beta)bD(-\beta)[/tex]
where b is ladder operator in problem of LHO and ##\beta## is complex number.
[tex]D(\beta)=exp(\beta b^{\dagger}-\beta^*b)[/tex]
- Relevant Equations
- Commutator [tex][b,b^{\dagger}]=I[/tex]
BCH formula:
[tex]e^Ae^B=exp(A+B+\frac{1}{2}[A,B]+\frac{1}{12}[A,[A,B]]+\frac{1}{12}[B,[A,B]]+...)[/tex]
From
[b,b^{\dagger}]=I it is easy to see that
[b,[b,b^{\dagger}]]=[b^{\dagger},[b,b^{\dagger}]]=0.
And from that
e^be^{b^{\dagger}}=e^{b+b^{\dagger}}e^{\frac{1}{2}I}
Using that I get
exp(\beta b^{\dagger}-\beta^*b)=e^{\beta b^{\dagger}}e^{-\beta^*b}e^{-\frac{1}{2}|\beta|^2I}.
So
D(\beta)bD(-\beta)=e^{\beta b^{\dagger}}e^{-\beta^*b}e^{-\frac{1}{2}|\beta|^2I}be^{-\beta b^{\dagger}}e^{\beta^*b}e^{-\frac{1}{2}|\beta|^2I}
and I do not see what to do from here.
[b,b^{\dagger}]=I it is easy to see that
[b,[b,b^{\dagger}]]=[b^{\dagger},[b,b^{\dagger}]]=0.
And from that
e^be^{b^{\dagger}}=e^{b+b^{\dagger}}e^{\frac{1}{2}I}
Using that I get
exp(\beta b^{\dagger}-\beta^*b)=e^{\beta b^{\dagger}}e^{-\beta^*b}e^{-\frac{1}{2}|\beta|^2I}.
So
D(\beta)bD(-\beta)=e^{\beta b^{\dagger}}e^{-\beta^*b}e^{-\frac{1}{2}|\beta|^2I}be^{-\beta b^{\dagger}}e^{\beta^*b}e^{-\frac{1}{2}|\beta|^2I}
and I do not see what to do from here.