Bernoulli equation with losses dilemma

Click For Summary
SUMMARY

The discussion centers on the application of the Bernoulli equation with losses, specifically addressing a problem involving fluid flow through a pipe system with frictional losses. The participants analyze the calculations involving the Fanning friction factor and the total length of tubing, which is determined to be 32 meters. Key points include the correct interpretation of the loss coefficient (K) and the necessity of including both horizontal and vertical lengths in the total length calculation. The final velocity calculation yielded a discrepancy, with the expected value being 9.0 m/s instead of the calculated 10.05 m/s.

PREREQUISITES
  • Understanding of Bernoulli's equation and its application to fluid dynamics
  • Familiarity with Fanning friction factor calculations
  • Knowledge of fluid flow concepts, including pressure drop and velocity
  • Basic principles of pipe flow and length considerations in fluid systems
NEXT STEPS
  • Study the derivation and application of the Bernoulli equation with friction losses
  • Learn about calculating Fanning friction factors in various pipe materials
  • Investigate the impact of pipe length and diameter on fluid flow rates
  • Explore advanced fluid dynamics topics, such as laminar vs. turbulent flow
USEFUL FOR

Engineering students, fluid mechanics practitioners, and anyone involved in hydraulic system design or analysis will benefit from this discussion.

williamcarter
Messages
153
Reaction score
4

Homework Statement


Hello,Could you please lend me a hand with this problem?I would really appreciate it.
Question:[/B]
Capture.JPG


Their Answer:
Capture2.JPG


KL=2*0.75(2 elbows) D=5*10^-2 m ;f=0.001(fanning friction factor)
Assumptions I made:
Point 1 which is at the top of the liquid in the tank:
h1=23 m; u1=0m/s(neglected due to Area differences) P1=0 gauge(atmos press)

Point 2 which is at the mouthpiece of fountain:
h2=0m(datum); u2=? P2=0 gauge(atmos press)

Homework Equations


We know bernoulli for losses with fanning friction factor
P1/ro*g+h1+u1^2/2*g=P2/ro*g+h2+u2^2/2*g +delta hloss

where delta hloss=K*u^2/2g
where K=f*4*L/D+Ki
where Ki=sum of K in our case 2*0.75(2 elbows)
where f is fanning friction factor.

The Attempt at a Solution


P1/ro*g+h1+u1^2/2*g=P2/ro*g+h2+u2^2/2*g +delta hloss
As we made the assumption in first step.This can be rewritten as:
h1=delta h loss
=>h1=K*u^2/2*g
h1=(f*4*L/D+Ki)*u^2/2g
=>u=sqrt(h1*2g)/(f*4*L/D+Ki)
and substituting values in this formula gives u=10.05 m/s
However their answer is 9.0 m/s

I do not understand
1) why they did Ki=0.5+2*0.75, from where comes that "0.5"?
2)From where comes that "1+" in their sqrt formula
2)Why they picked L=20+10+2

Thank you in advance , much appreciated.
 
Physics news on Phys.org
In my judgment, all three items that you cited are errors that they made.
 
  • Like
Likes   Reactions: williamcarter
Chestermiller said:
In my judgment, all three items that you cited are errors that they made.
Thank you very much for your quick response.
I would be more than glad if you could let me know how was the correct approach.
 
The 0.5 should be a 1, and the 1 shouldn't be there. I was wrong about the L. The total length of tubing is 20 + 10 (horizontal) + 2 (vertical).
 
  • Like
Likes   Reactions: williamcarter
Chestermiller said:
The 0.5 should be a 1, and the 1 shouldn't be there. I was wrong about the L. The total length of tubing is 20 + 10 (horizontal) + 2 (vertical).

Thank you, could you please tell me why we need to add 20+10+2.
Why is it needed to add 20+10+2? And why we can't take in consideration just the height?
Why is it needed to do like that?
I mean why we cannot put just the height ,20 m?or 25m?
 
Last edited:
williamcarter said:
Thank you, could you please tell me why we need to add 20+10+2.
Why is it needed to add 20+10+2? And why we can't take in consideration just the height?
Why is it needed to do like that?
I mean why we cannot put just the height ,20 m?or 25m?
The total length of tubing is 32 meters. This is the length that experiences a frictional pressure drop.
 
  • Like
Likes   Reactions: williamcarter
Chestermiller said:
The total length of tubing is 32 meters. This is the length that experiences a frictional pressure drop.
Ok I understood this, thank you.But how do you know that?
 
williamcarter said:
Ok I understood this, thank you.But how do you know that?
Waddya mean? How long is the tubing?
 
  • Like
Likes   Reactions: williamcarter
Chestermiller said:
Waddya mean? How long is the tubing?
The total length of tubing is 32 meters. This is the length that experiences a frictional pressure drop.

How do you know that?How did you identified that?What was the criteria to get to that value?What was the mechanism behind it?
 
  • #10
williamcarter said:
How do you know that?How did you identified that?What was the criteria to get to that value?What was the mechanism behind it?
If fluid flows in one end of a pipe and comes out the other end, doesn't it have to travel through the entire length of pipe to get from one end to the other? Isn't there viscous wall friction over the entire length?
 
  • Like
Likes   Reactions: williamcarter
  • #11
Chestermiller said:
If fluid flows in one end of a pipe and comes out the other end, doesn't it have to travel through the entire length of pipe to get from one end to the other? Isn't there viscous wall friction over the entire length?
Yes,it is, thank you, now is clear, much appreciated.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
9K
  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K