yungman
- 5,741
- 294
This is the equation given for the Y.
Y_{p}=\frac{J_{p}(x)cos(p\pi)-P_{-p}(x)}{sin(p\pi)}
In many books, if p is an integer n, they just said Y_{n}=lim(p\rightarrow n) Y_{p}
J_{p}(x)=\sum^{k=0}_{\infty}\frac{(-1)^{k}}{k!\Gamma(k+p+1)}(\frac{x}{2})^{2k+p} which give
J_{n}(x)=\sum^{k=0}_{\infty}\frac{(-1)^{k}}{k!\Gamma(k+n+1)}(\frac{x}{2})^{2k+n}=\sum^{k=0}_{\infty}\frac{(-1)^{k}}{k!(k+n)!}(\frac{x}{2})^{2k+n}
For p=integer n, J_{-n}(x)=(-1)^{n}J_{n}(x) \Rightarrow J_{-n}(x)=J_{n}(x),n=0,2,4...
and J_{-n}(x)=-J_{n}(x), n=1,3,5...
No books that I have gave the answer for Y when p is an integer. This is what I am doing so far and I cannot get the right answer:
\stackrel{lim}{p \rightarrow n} Y_{p}=\frac{J_{p}(x)cos(p\pi)-P_{-p}(x)}{sin(p\pi)}=J_{n}(x)\frac{cos(p\pi)-1}{sin(p\pi)}, n=0,2,4,6...
=J_{n}(x)\frac{cos(p\pi)+1}{sin(p\pi)}, n=1,3,5...
So I can evaluate the lim by L'Hopital that \frac{f(x)}{g(x)}=\frac{f'(x)}{g'(x)}
\frac{cos(p\pi)-1}{sin(p\pi)}=\frac{[cos(p\pi)-1]'}{[sin(p\pi)]'}=\frac{-\pi sin(p\pi)}{\pi cos(p\pi)}
If we take p to an integer, the whole thing become zero! I can't get Y_{n}
also what is \stackrel{lim}{x\rightarrow 0} x^{0}?
Thanks for your time
Alan
Y_{p}=\frac{J_{p}(x)cos(p\pi)-P_{-p}(x)}{sin(p\pi)}
In many books, if p is an integer n, they just said Y_{n}=lim(p\rightarrow n) Y_{p}
J_{p}(x)=\sum^{k=0}_{\infty}\frac{(-1)^{k}}{k!\Gamma(k+p+1)}(\frac{x}{2})^{2k+p} which give
J_{n}(x)=\sum^{k=0}_{\infty}\frac{(-1)^{k}}{k!\Gamma(k+n+1)}(\frac{x}{2})^{2k+n}=\sum^{k=0}_{\infty}\frac{(-1)^{k}}{k!(k+n)!}(\frac{x}{2})^{2k+n}
For p=integer n, J_{-n}(x)=(-1)^{n}J_{n}(x) \Rightarrow J_{-n}(x)=J_{n}(x),n=0,2,4...
and J_{-n}(x)=-J_{n}(x), n=1,3,5...
No books that I have gave the answer for Y when p is an integer. This is what I am doing so far and I cannot get the right answer:
\stackrel{lim}{p \rightarrow n} Y_{p}=\frac{J_{p}(x)cos(p\pi)-P_{-p}(x)}{sin(p\pi)}=J_{n}(x)\frac{cos(p\pi)-1}{sin(p\pi)}, n=0,2,4,6...
=J_{n}(x)\frac{cos(p\pi)+1}{sin(p\pi)}, n=1,3,5...
So I can evaluate the lim by L'Hopital that \frac{f(x)}{g(x)}=\frac{f'(x)}{g'(x)}
\frac{cos(p\pi)-1}{sin(p\pi)}=\frac{[cos(p\pi)-1]'}{[sin(p\pi)]'}=\frac{-\pi sin(p\pi)}{\pi cos(p\pi)}
If we take p to an integer, the whole thing become zero! I can't get Y_{n}
also what is \stackrel{lim}{x\rightarrow 0} x^{0}?
Thanks for your time
Alan
Last edited: