B Best fit curve associated with the combination formula

iScience
Messages
466
Reaction score
5
Sorry if this is more of a HW question (if so then moderator please move my question. Thanks!)

Hi, I'm trying to get an expression for a best fit curve of the combination formula (##_nC_r##).
As far as I can tell, the curve is a simple parabolic curve, and its shape doesn't change. It's just scaled depending on ##n##.

How might I get the continuous form of the discrete combination formula?
 
Mathematics news on Phys.org
It is not a parabola.

The generalization of factorials to the real numbers is the gamma function.
 
  • Like
Likes Mesud1
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top