Aetius said:
What is the best procedure to determine Lambda to calculate the Poisson probability? Say I want to calculate P(X ≥1) of an accident occurring next day. For this I would calculate the average of daily accidents and divide it by 10. The question is, should I take the previous 10 days? Or calculate λ averaging i.e. 10 day periods for the last 200 days and divide them by 20? What would be the best?
Thank you much for any constructive comment.
Hi Aetius, welcome to MHB! ;)
Assuming a constant accident rate we will get a more accurate $\lambda$ if we take the average over a longer period of time.
However, if $\lambda$ is expected to change over time, such as in traffic accidents, then we should take a shorter period in which we assume that $\lambda$ is more or less constant.
With a shorter period comes a wider confidence interval for $\lambda$ though, so we can't take it too short.
Intuitively I'd expect that the rate of traffic accidents does not change significantly in 200 days.
It would over decades though.
That is, unless systematic changes were made in the area with regard to traffic safety and the like.
A first step in finding an acceptable interval in which $\lambda$ is sufficiently constant could be to average it over a shifting interval in time and see if we get a more or less level curve.
Suppose we have a total of $k$ traffic accidents in a specific period of $n$ days.
Then we can quantify the confidence interval for the estimate $\hat\lambda = \frac kn$ by:
$$\frac 12\chi^2(\alpha/2;\ 2k) \le n\lambda \le \frac 12\chi^2(1-\alpha/2;\ 2k+2)$$
where $\chi^2(p;\ df)$ is the inverse $\chi^2$-distribution for the cumulative probability $p$ with $df$ degrees of freedom.