I Bijectivity of Manifolds: Can m≠n?

  • I
  • Thread starter Thread starter kent davidge
  • Start date Start date
  • Tags Tags
    Manifolds
kent davidge
Messages
931
Reaction score
56
Is it possible for a manifold to be homeomorphic to ##R^m## in some regions and homeomorphic to ##R^n## in other regions, with ##m \neq n##?
 
Physics news on Phys.org
kent davidge said:
Is it possible for a manifold to be homeomorphic to ##R^m## in some regions and homeomorphic to ##R^n## in other regions, with ##m \neq n##?
This depends on how you define a manifold. Let's say that we only assume it to be locally Euclidean. Then the two parts cannot be connected, as this would lead to a point, where it isn't Euclidean anymore. But if we allow more than one component, then it is possible, although we would probably investigate each of the components on their own.
 
  • Like
Likes dextercioby, Matterwave and kent davidge
To just expand on fresh_42 a little, I quote from wikipedia:

Generally manifolds are taken to have a fixed dimension (the space must be locally homeomorphic to a fixed n-ball), and such a space is called an n-manifold; however, some authors admit manifolds where different points can have different dimensions.[1] If a manifold has a fixed dimension, it is called a pure manifold. For example, the sphere has a constant dimension of 2 and is therefore a pure manifold whereas the disjoint union of a sphere and a line in three-dimensional space is not a pure manifold. Since dimension is a local invariant (i.e. the map sending each point to the dimension of its neighbourhood over which a chart is defined, is locally constant), each connected component has a fixed dimension.

Since this question was posed in the physics (SR/GR) sub-forum, I will specify that generally we consider only a "pure manifold" when doing physics. This is because if you have a disjoint union of two sets as your "manifold", then those disjoint unions can't actually interact with each other. There's no path that takes you from one to the other. You can't send signals between the two, and so, for observers in one manifold, the other manifold might as well not exist.
 
  • Like
Likes dextercioby, kent davidge and Ibix
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top