zeion
- 455
- 1
Homework Statement
Prove that
\sum^{l}_{k=0} n \choose k m \choose l-k = n+m \choose l
Hint: Apply the binomial theorem to (1+x)n(1+x)m
Homework Equations
The Attempt at a Solution
I apply the hint to that thing to get \sum^{n}_{j=0} n \choose j x^j \sum^{m}_{k=0} m \choose k x^k= \sum^{n}_{j=0}\sum^{m}_{k=0}n\choose jm\choose kx^{j+k} = \sum^{n+m}_{l=0}n+m \choose lx^l
Now I am stuck.