Binomial Distribution: Average & Probability of ≥1 Success

aaaa202
Messages
1,144
Reaction score
2
The average if the binomial distribution with probability k for succes is simply:

<> = Nk

So this means that if <> = 1 the distribution function must be peaked around 1. In general when is it a good approximation (i.e. when is the function peaked sufficiently narrow) to say that the probability in N tries to have one or more succeses is simply:

P(≥1) = Nk

this obviously does not hold for Nk>1 but on the other hand I don't expect it to hold for small N. So my guess is when Nk is sufficiently small. Is that correct?
 
Physics news on Phys.org
P(at least one success) = 1 - P(all failure) = 1 - (1-k)N.
You should be able to analyze it.
 
Right so using the binomail theorem you find:

P(at least one success) = Nk - K(N,2)k2 + K(N,3)k3 - K(N,4)k4 + ...

So the question is when the first term dominates. I am guessing for sufficiently small k?
 
You need Nk small, not just k. In your expression you seem to have extraneous K (capital k) from the second term on.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top