MHB How do I calculate the side of a rhombus using the bisector of an angle theorem?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Angle Theorem
AI Thread Summary
To determine the side of a rhombus using the bisector of an angle theorem, it is established that if AB/BC = AD/DC, then the parallelogram is a rhombus. The first part of the problem is confirmed correct. For the second part, with given values AB=9, AC=10, and BC=AD=x, the equation 9/x = x/(10-x) leads to a quadratic equation with a unique positive solution. By applying properties of similar triangles, it is derived that ED equals 3.6. The calculations confirm the side length of the rhombus.
Yankel
Messages
390
Reaction score
0
Hello all,

I have this question I struggle with...

View attachment 7836

EDFB is a parallelogram. It is known that AB/BC = AD/DC.

1) Prove that the parallelogram is a rhombus.

2) It is given that: AB=9, AC=10, BC=AD. Calculate the side of the rhombus.

I think I solved the first part. There is a theorem called the "bisector of an angle theorem" according to which if AB/BC = AD/DC then the line BD is a bisector of an angle of the angle B and then a parallelogram in which the diagonal is a bisector of an angle is a rhombus. Am I correct ?

I have a problem with the second part. I can't figure out how to solve it. The answer should be 3.6. I have tried the intercept theorem (or Thales' theorem), but couldn't figure it out.

Can you kindly assist to in the second part of the question ?

Thank you in advance !
 

Attachments

  • aaaa.PNG
    aaaa.PNG
    1.9 KB · Views: 108
Mathematics news on Phys.org
Yankel said:
Hello all,

I have this question I struggle with...
EDFB is a parallelogram. It is known that AB/BC = AD/DC.

1) Prove that the parallelogram is a rhombus.

2) It is given that: AB=9, AC=10, BC=AD. Calculate the side of the rhombus.

I think I solved the first part. There is a theorem called the "bisector of an angle theorem" according to which if AB/BC = AD/DC then the line BD is a bisector of an angle of the angle B and then a parallelogram in which the diagonal is a bisector of an angle is a rhombus. Am I correct ?
Yes.
Yankel said:
I have a problem with the second part. I can't figure out how to solve it. The answer should be 3.6. I have tried the intercept theorem (or Thales' theorem), but couldn't figure it out.

Can you kindly assist to in the second part of the question ?

If BC = AD = x, then the equation AB/BC = AD/DC becomes 9/x = x/(10-x), a quadratic for x with a unique positive solution.

From the similar triangles AED and ABC you can then calculate that ED/x = x/10, which gives ED = 3.6.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top