Black Body Radiation and Kinetic Energy

AI Thread Summary
Black body radiation depletes a body's thermal energy, which corresponds to the kinetic energy of its particles. However, it does not affect the overall kinetic energy of a body moving at a uniform velocity. A chunk of rock in space, despite losing thermal energy through black body radiation, does not experience deceleration. The conservation of momentum ensures that its velocity remains constant. Thus, black body radiation does not impact the motion of the body as a whole.
Ontophobe
Messages
60
Reaction score
1
I see that black body radiation slowly depletes a body's thermal energy, which is just another way of saying that black body radiation depletes the kinetic energy of a body's constituent particles. But does black body radiation also cut into the kinetic energy of the body as a whole, such that a chunk of rock in space moving at uniform velocity is actually technically slowly decelerating?
 
Science news on Phys.org
No.
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Back
Top