Black holes and entropy: energy with respect to infinity

cesiumfrog
Messages
2,010
Reaction score
5
G'day!

In the paper "Black holes and entropy" (JD Bekenstein, Phys Rev D 7 2333, 1973), in the section on Geroch's perpetual motion* machine, I'm trying to understand why they can state "its energy as measured from infinity vanishes"?

What they mean is that the work extracted by lowering a test mass (m), "from infinity" (on an ideal string), to the (precise) surface of a black hole event horizon, is exactly mc^2.

I'm certainly not disagreeing: in Newtonian gravity, you can obtain infinite work by lowering one point mass toward another, but the point where the work (or - gravitational potential) equals the mass-energy happens to occur at half the Schwarzschild radius, where the approximation is invalid. Intuitively, it seems reasonable as, due to time dilation, the gravitational force becomes (permanently) zero such that it is a conceivable point where "all" of the work has been extracted. Can anyone give a more concrete explanation?

*The proposed machine takes a box "of black-body radiation" from a warm bath, lowers it toward a black hole elsewhere, and allows some energy to escape into the event horizon. The box is retrieved so as to repeat the process of converting heat into work with 100% efficiency, a violation of thermodynamics. The machine fails if the box can't quite be lowered all the way onto the surface (limited say by the radiation wavelength) so the efficiency is slightly less, and in fact turns out less than the Carnot efficiency given the black hole "temperature" (defined analogously with that in classical statistical mechanics, based on the similarity of thermodynamic entropy to event horizon surface area). It's an interesting paper, I'm reading it as a lead-up to Hawking radiation.
 
Physics news on Phys.org
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
4
Views
1K
Replies
4
Views
2K
Replies
32
Views
2K
Replies
11
Views
2K
Replies
24
Views
3K
Replies
20
Views
2K
Back
Top