Block sliding down an incline and hitting a smaller block

AI Thread Summary
A cube slides down a frictionless incline and collides elastically with a smaller cube at the bottom. The incline height is 30 cm, and the table is 90 cm high. The initial speed of the larger cube is calculated using energy conservation, yielding 2.42 m/s. To find the final velocities after the collision, both momentum and energy conservation principles must be applied, leading to two equations with two unknowns. The discussion emphasizes the need to correctly set up these equations to solve for the final speeds of both blocks.
12boone
Messages
21
Reaction score
0

Homework Statement


In a physics lab, a cube slides down a frictionless incline as shown in the figure (Intro 1 figure) , and elastically strikes another cube at the bottom that is only 1/6 its mass. The picture is located in the attachement. If the incline is 30 cm high and the table is 90 cm off the floor, where does each cube land? [Hint: Both leave the incline moving horizontally.]


Homework Equations


kinematics and MVi+MbVi=MVf+MbVf


The Attempt at a Solution



I have done several things. I tried to find the final velocity using kinematics and then plug it into find the other final velocity. I tried using the 1/6 to cancel all masses so that i get vi=vf+1/6vf. I am getting wrong answers everytime though.
 

Attachments

  • GIANCOLI_ch07_p29.jpg
    GIANCOLI_ch07_p29.jpg
    5.3 KB · Views: 809
Physics news on Phys.org
Show exactly what you did. Your first goal should be to find the speeds at which they leave the table.

Hint: You'll need both energy and momentum conservation.
 
i used mgh=1/2mv^2 to get the speed of the big block which is 2.42 m/s I plugged it in like this 9.8(.30m)=1/2v^2 then used algebra to solve. then i did the same thing for the final velocity of the lil block so i did 9.8(.90)=1/2v^2 and i found it was 4.2 m/s. then i found the va' by doing 2.42=Va'+1/6(4.2) and that is 1.72.
 
12boone said:
i used mgh=1/2mv^2 to get the speed of the big block which is 2.42 m/s I plugged it in like this 9.8(.30m)=1/2v^2 then used algebra to solve.
This sounds good.
then i did the same thing for the final velocity of the lil block so i did 9.8(.90)=1/2v^2 and i found it was 4.2 m/s.
I don't understand what you did here. It looks like you found the vertical component of the block speed when it hits the floor. You'll need this later, but first you need to find the horizontal speed with which both blocks leave the table.

Once you have the speed of the big block just before the collision, apply conservation of momentum and energy to find the block speeds just after the collision.
 
if i use that i get 2.42=Va'+1/6Va'b i have two variables
 
i mean 2.42=Va'+1/6Vb'
 
I have no idea how to do this part. i keep getting two variables no matter what i try to manipulate. what is the eq for con of energy. 1/2 mv^2 +mgh=1/2mv^2+mgh?
 
12boone said:
i mean 2.42=Va'+1/6Vb'
OK. That's conservation of momentum.
12boone said:
i keep getting two variables no matter what i try to manipulate. what is the eq for con of energy. 1/2 mv^2 +mgh=1/2mv^2+mgh?
The potential energy doesn't change during the collision, so just compare the initial KE (of the big block) to the final KE (of both blocks). That's how you'll get your conservation of energy equation, which is the second equation that you need.
 
Back
Top