MHB Bound of Euler method- nonuniform partition

Click For Summary
The discussion focuses on deriving an error bound for the Euler method using a nonuniform partition, specifically under the condition that the minimum step size is greater than a positive multiple of the maximum step size. The key formula for the error bound is presented, which involves the maximum step size and the second derivative of the function. A lemma is referenced to support the derivation of the error bound. A participant questions the application of step sizes in the Taylor expansion, suggesting that each term should include the step size squared, which is acknowledged as a valid point by another participant. The conversation highlights the importance of precision in mathematical formulations.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Consider a nonuniform partition $a=t_0< t_1< \dots < t_{\nu}=b$ and assume that if $h_n=t^{n+1}-t^n, 0 \leq n \leq N-1 $ is the changeable step, then $\min_{n} h_n > \lambda \max_{n} h_n, \lambda>0$ independent of $n$.
Show a bound of the error of Euler method analogous to

$$||y^n-y(t^n)|| \leq h c_1 \frac{e^{L(t^n-a)}}{2L} \max_{t \in [a,t^n]} ||y^{(2)} (t)||$$

where $h=\max_{n} h_n$.

According to my lecture notes:We will use the following lemma:

Let $\delta$ be a positive number and $K, d_0, d_1, \dots$ non-negative numbers such that

$$d_{i+1} \leq (1+ \delta) d_i+K, i=0,1, \dots$$

Then it holds

$$d_n \leq e^{n \delta} d_0+ K \frac{e^{n \delta}-1}{\delta}, n=0,1,2, \dots$$

$$\left\{\begin{matrix}
y^{n+1}=y^n+h_n f(t^n,y^n) &, n=0,1, \dots, N-1 \\
y^0=y(0) &
\end{matrix}\right.$$

Expanding $y$ with Taylor, we have:

$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$

From the differential equation we have:

$$y(t^{n+1})=y(t^n)+ h_n f(t^n, y(t^n))+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$

$$y(t^{n+1})-y^{n+1}=y(t^n)-y^n+h_n [f(t^n, y(t^n))-f(t^n,y^n)]+ \frac{h h_n}{2} y''( \xi_n)$$

$$\epsilon^{n+1}= \epsilon^n+ h_n [f(t^n, y(t^n))-f(t^n,y^n)]+ \frac{h h_n}{2} y''(\xi_n)$$

and so on...

Why is it as follows?

$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$Shouldn't we have $h_n$ at each point where we have the step, i.e. shouldn't it be as follows?

$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h_n^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$

Or am I wrong? (Worried)
 
Mathematics news on Phys.org
Hey! (Mmm)

evinda said:
Shouldn't we have $h_n$ at each point where we have the step, i.e. shouldn't it be as follows?

$$y(t^{n+1})=y(t^n)+ h_n y'(t^n)+ \frac{h_n^2}{2} y''(\xi_n), \xi_n \in (t^n, t^{n+1})$$

Or am I wrong? (Worried)

You're right. Looks like a bit of sloppiness. (Nod)
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
8K
  • · Replies 11 ·
Replies
11
Views
3K