Is Bragg's Law Equation Modified for Different Incidence Angles?

  • Thread starter Thread starter helloween0908
  • Start date Start date
  • Tags Tags
    Bragg's law Law
helloween0908
Messages
4
Reaction score
0
problem: In Bragg's law equation, mormally, we measure the angle θ from the surface If instead the light strikes the grating at an angle of incident θ’ (measured from the normal), show that the condition for an intensity maximum is not 2dsin θ= mλ (m=1,2,3...)
but rather
d(sin θ + sin θ’ ) = mλ (m=0, ±1, ±2, ±3...)

No matter which way I tried, I finally ended up with 2dcosθ’ rather than d(sin θ + sin θ’ ) = mλ (m=0, ±1, ±2, ±3...).
Can anyone help me?
 
Physics news on Phys.org
When you say "Bragg's law" usually you mean x-ray diffraction on a lattice.
Here it seems that you have something else: diffraction of light from a diffraction grating.
Or maybe a mix-up.
The formula with the sum of the two sines applies to the diffraction grating when the light hits it at an angle theta'.
There is a path difference between the incident rays hitting two different "holes" in the grating and this is given by d*sin(theta'). And then there is the path difference between the rays on the other side of the grating which is d*sin(theta).
I hope this helps.
 
Is this what you mean:
96831242139501.JPG

The Bragg's law becomes:
the length of the red+ blue lines = d(sin θ + sin θ’ ) = mλ
 
No. As I said, I was referring to an optical diffraction grating.
something like this:
http://en.wikipedia.org/wiki/Diffraction_grating
The math is similar though.

For x-ray diffraction from the crystal the maximum occurs when the two angles are equal.
 
oh, thanks.
The problem seems clear now :D
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top