selfAdjoint said:
Hi mf, Yes I see the asymmetry argument but I still don't see the how Cramerite satz works in the asymmetric case. Originally the retarded quantum waves went into the future, and the advanced waves went into the past, and both were reflected by the supposed abosrbers, handwavingly (as far as I ever saw) identified with the big bang and the big crunch. Then the relected waves interfered, and here he did calculations in the simple cases at least to show that the famous quantum behavior resulted. But if there is no reflection for the retarded waves how does this work?
I agree it seems like handwaving. As far as I can see Cramer is suggesting the advanced waves get reflected at T0, and thereby constructively interfere with retarded waves (see figure 2 in his paper attached to this post as a GIF file – I can’t explain it any better than he shows it in his figures).
This explains why we see retarded waves. That there is no future singularity then (according to Cramer) means that there is no future point of reflection, hence why we see asymmetry (we see waves going from past to future, but not from future to past). In other words, an ever-expanding universe with no future singularity (rather than being a problem because of future transparency and hence lack of absorbers) is actually
necessary for the emergence of the electromagnetic arrow of time.
selfAdjoint said:
As far as "explaining reality" goes, I am of two minds currently. One is that quantum mechanics was never built for that purpose, it's complete in itself but it is a machine that gives accounts of behavior, not explanations, and to attempt to use it for that incorrect purpose results in science-fiction - Cramer's time travel or Everett's multiple universes.
OK, I can go along with this as far as it goes – this is the Shut Up & Calculate approach. But to me not a very useful philosophy.
selfAdjoint said:
My other mind leads me to look into the combination of decoherence and relational quantum mechanics, to see how much can be retrieved there. Decoherence can explain how the classical world automatically results from the quantum world, but it doesn't address the measurement problem.
Neither, it seems to me, does it address the delayed choice problem.
selfAdjoint said:
RQM is one way of addressing the measurement problem, but it seems to me very much a work in progress at this point. I don't really like Consistent Histories because it seems to be just SUAC in disguise.
I’m not familiar with RQM – does this address the delayed choice problem?
selfAdjoint said:
Currently my favorite hard-nosed popular account of the issues with quantum mechanics is Where Does the Weirdness Go? by David Lindley, which I excerpted a biut earlier in this thread.
Yes, this is a good book – from memory though doesn’t it say “decoherence is the answer”? How does decoherence address the delayed choice issue?
physicsmasta said:
I just read, "Beyond the Quantum" and in it it suggest that light particles have mass and all we have to do measure speed, position and force simutamelously is to measure the mass of light in the presence of gravity on earth. Do you believe this would work please reply!
Light does have a “mass-equivalent” in the sense of E=mc^2 where E = hf in the case of light (f = frequency), but light does not have rest mass. Is this what you mean?
Reagle said:
1. It makes no difference what is at D3.
If the idler photon was sent to D3, and D3 had been a coffee cup (instead of a detector), then the interference pattern would be still destroyed.
Agreed. That’s an important point (but we would have no way of detecting and displaying that destroyed pattern any more, because we’ve now lost our detector and substituted a cup of coffee instead).
Reagle said:
2. If conclusion 1 is true then the interference pattern at DO is dependent on the existence of which path information, even if which path information is impossible to recover (such as a photon hitting a coffee cup at D3).
The interference pattern is not “at D0”, it is in the coincidence between detections at D0 and D1 (or D0 and D2). There is no interference pattern in the D0 data alone. But the detections at D0, D1 and D2 do not contain any which-path information – this information is only in the coincidence between detections at D0, D3 and D4 (which do not show interference fringes). If we replace D3 / D4 with a cup of coffee then we cannot recover any coincidence detections between these cups of coffee and D0, hence the which path information would be lost. But the interference at D0/D1 and D0/D2 would still exist. The presence of interference fringes at D0/D1 and D0/D2 has nothing whatsoever to do with what happens at D3 and D4 – different idler (and signal) photons are involved.
Hurkyl said:
If you're just looking at D0, there is no interference pattern. The "interference pattern" only surfaces when split all the photons striking D0 into two groups, each group corresponding to having its pair strike D3 or D4.
That’s correct.
For each signal photon hitting D0, there is an idler photon which
either goes to D1, D2, D3 or D4. The interference fringes emerge only when we look at the coincidence detections between D0 and D1, or between D0 and D2. The which way information only emerges when we look at the coincidence detections between D0 and D3, or between D0 and D4.
Reagle said:
Q) The whole point of Yoon-Ho Kim, R. Yu, S.P. Kulik, and Y.H. Shih's fairly famous paper called "A Delayed Choice Quantum Eraser"
is that the position of the signal photon impact on detector D0 is belatedly dependent on if the idler photon goes to D3 (which establishes which path information) or goes to either D0 or D1 (which erases which path information).
This is a pretty standard delayed quantum eraser setup with entangled pairs.
But in my simple mind this is totally impossible, since once the location of the D0 signal photon impact has been recorded, it can not change.
Imho your “simple mind” interpretation is correct – this is impossible. I do not believe we can understand what is going on by saying the position on D0 is “belatedly dependent” on what happens later at D1, D2, D3 or D4. In terms of temporal sequence, the signal photon hits D0 BEFORE the idler photon has “decided” whether to go for D1, D2, D3 or D4. Whatever happens to that idler
cannot (imho) then retrospectively cause the detection position on D0 to change – EXCEPT in the Transactional Interpretation sense that an advanced wave may be sent out by D1/2/3/4 which (travelling backwards in time) somehow then “causes” the signal photon to land at a certain point on D0.
It seems to me that the only way to explain what is going on is
either that there is some backwards-in-time correlation between entangled states,
or that the world is super-deterministic via hidden variables (whatever it is that causes the signal photon to land at a particular position on D0 also cause the twin idler to hit either D1/2/3 or 4).
If anyone has another explanation I’m all ears….
Best Regards
Below for selfAdjoint is attached figure 2 from Cramer's paper on The Arrow of Electromagnetic Time and Generalized Absorber Theory, showing advanced wave reflection at the T0 singularity. The caption to this figure is :
Cramer said:
Figure 2: Minkowski diagram showing an open-ended emission transaction. The conventions used here are the same as those used in Fig. 1. The advanced waves propagate backward in time to the T=0 origin, where they are subject to a reflection boundary condition. The reflected wave arising from the boundary condition cancels the advanced wave up to the emission event, and at times after emission it reinforces the retarded wave from the emitter.