MHB Calc Challenge IV: Evaluate Limit of Int.

AI Thread Summary
The discussion focuses on evaluating the limit of the integral $$\lim_{{k}\to{\infty}} \int_{k}^{2k} \frac{k^3x}{x^5+1}\,dx$$. MarkFL efficiently solves the challenge using L'Hôpital's rule, prompting praise from other participants. There is a playful suggestion to solve the problem again without relying on L'Hôpital's rule, which leads to lighthearted banter. Participants express interest in exploring alternative methods for the solution. The conversation highlights both the mathematical challenge and the camaraderie among forum members.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\lim_{{k}\to{\infty}} \int_{k}^{2k} \frac{k^3x}{x^5+1}\,dx$$.
 
Mathematics news on Phys.org
My solution:

I would write the limit as:

$$L=\lim_{k\to\infty}\left[\frac{\int_{k}^{2k}\dfrac{x}{x^5+1}}{k^{-3}}\right]$$

Observing that we have the indeterminate form 0/0, application of L'Hôpital's rule yields:

$$L=\lim_{k\to\infty}\left[\frac{\dfrac{k}{k^5+1}-\dfrac{4k}{32k^2+1}}{3k^{-4}}\right]$$

This can be simplified to:

$$L=\frac{1}{3}\lim_{k\to\infty}\left[\frac{k^5\left(28k^5-3\right)}{\left(32k^5+1\right)\left(k^5+1\right)}\right]=\frac{1}{3}\cdot\frac{28}{32}=\frac{7}{24}$$
 
MarkFL said:
My solution:

I would write the limit as:

$$L=\lim_{k\to\infty}\left[\frac{\int_{k}^{2k}\dfrac{x}{x^5+1}}{k^{-3}}\right]$$

Observing that we have the indeterminate form 0/0, application of L'Hôpital's rule yields:

$$L=\lim_{k\to\infty}\left[\frac{\dfrac{k}{k^5+1}-\dfrac{4k}{32k^2+1}}{3k^{-4}}\right]$$

This can be simplified to:

$$L=\frac{1}{3}\lim_{k\to\infty}\left[\frac{k^5\left(28k^5-3\right)}{\left(32k^5+1\right)\left(k^5+1\right)}\right]=\frac{1}{3}\cdot\frac{28}{32}=\frac{7}{24}$$

Aww...that is fast and efficient of you, MarkFL to solve my today challenge! Well done MarkFL!

When you solved it using the L'Hôpital's rule, your solution becomes very neat and straightforward. I am wondering if you want to tackle it for another time without using the help from the L'Hôpital's rule, hehehe...
 
anemone said:
Aww...that is fast and efficient of you, MarkFL to solve my today challenge! Well done MarkFL!

When you solved it using the L'Hôpital's rule, your solution becomes very neat and straightforward. I am wondering if you want to tackle it for another time without using the help from the L'Hôpital's rule, hehehe...

Why do you want to tie my hands like that? (Wasntme)
 
MarkFL said:
Why do you want to tie my hands like that? (Wasntme)

Because I would sing a song for you if you try that!:p
 
Solution without the use of L'Hôpital's rule:

Since $x^5+1<x(x+1)^4$ and $x^5<x^5+1$ for $x\ge 1$, we have

$\dfrac{1}{(x+1)^4}<\dfrac{x}{x^5+1}<\dfrac{1}{x^4}$ for $x\ge 1$

It then follows that

$\displaystyle k^3\int_{k}^{2k} \frac{1}{(x+1)^4}\,dx<k^3\int_{k}^{2k} \frac{x}{x^5+1}\,dx<k^3\int_{k}^{2k} \frac{1}{x^4}\,dx$ for every $k\ge 1$.

Now,

$\displaystyle \begin{align*} k^3\int_{k}^{2k} \frac{1}{(x+1)^4}\,dx&=\dfrac{k^3}{3}\left(\dfrac{1}{(k+1)^3}-\dfrac{1}{(2k+1)^3}\right)\\&=\dfrac{1}{3}\left(\left(\dfrac{k}{(k+1)}\right)^3-\left(\dfrac{k}{(2k+1)^3}\right)^3\right)\\&=\dfrac{1}{3}\left(1-\dfrac{1}{8}\right)\text{when $k$ approaches $\infty$}\\&=\dfrac{7}{24}\end{align*}$

and

$\displaystyle \begin{align*} k^3\int_{k}^{2k} \frac{1}{x^4}\,dx&=\dfrac{k^3}{3}\left(\dfrac{1}{k^3}-\dfrac{1}{(2k)^3}\right)\\&=\dfrac{1}{3}\left(1-\dfrac{1}{8}\right)\text{when $k$ approaches $\infty$}\\&=\dfrac{7}{24}\end{align*}$

It follows by the Squeeze principle that hence $$\lim_{{k}\to{\infty}} \int_{k}^{2k} \frac{k^3x}{x^5+1}\,dx=\dfrac{7}{24}$$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top