MHB Calc Challenge IV: Evaluate Limit of Int.

AI Thread Summary
The discussion focuses on evaluating the limit of the integral $$\lim_{{k}\to{\infty}} \int_{k}^{2k} \frac{k^3x}{x^5+1}\,dx$$. MarkFL efficiently solves the challenge using L'Hôpital's rule, prompting praise from other participants. There is a playful suggestion to solve the problem again without relying on L'Hôpital's rule, which leads to lighthearted banter. Participants express interest in exploring alternative methods for the solution. The conversation highlights both the mathematical challenge and the camaraderie among forum members.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\lim_{{k}\to{\infty}} \int_{k}^{2k} \frac{k^3x}{x^5+1}\,dx$$.
 
Mathematics news on Phys.org
My solution:

I would write the limit as:

$$L=\lim_{k\to\infty}\left[\frac{\int_{k}^{2k}\dfrac{x}{x^5+1}}{k^{-3}}\right]$$

Observing that we have the indeterminate form 0/0, application of L'Hôpital's rule yields:

$$L=\lim_{k\to\infty}\left[\frac{\dfrac{k}{k^5+1}-\dfrac{4k}{32k^2+1}}{3k^{-4}}\right]$$

This can be simplified to:

$$L=\frac{1}{3}\lim_{k\to\infty}\left[\frac{k^5\left(28k^5-3\right)}{\left(32k^5+1\right)\left(k^5+1\right)}\right]=\frac{1}{3}\cdot\frac{28}{32}=\frac{7}{24}$$
 
MarkFL said:
My solution:

I would write the limit as:

$$L=\lim_{k\to\infty}\left[\frac{\int_{k}^{2k}\dfrac{x}{x^5+1}}{k^{-3}}\right]$$

Observing that we have the indeterminate form 0/0, application of L'Hôpital's rule yields:

$$L=\lim_{k\to\infty}\left[\frac{\dfrac{k}{k^5+1}-\dfrac{4k}{32k^2+1}}{3k^{-4}}\right]$$

This can be simplified to:

$$L=\frac{1}{3}\lim_{k\to\infty}\left[\frac{k^5\left(28k^5-3\right)}{\left(32k^5+1\right)\left(k^5+1\right)}\right]=\frac{1}{3}\cdot\frac{28}{32}=\frac{7}{24}$$

Aww...that is fast and efficient of you, MarkFL to solve my today challenge! Well done MarkFL!

When you solved it using the L'Hôpital's rule, your solution becomes very neat and straightforward. I am wondering if you want to tackle it for another time without using the help from the L'Hôpital's rule, hehehe...
 
anemone said:
Aww...that is fast and efficient of you, MarkFL to solve my today challenge! Well done MarkFL!

When you solved it using the L'Hôpital's rule, your solution becomes very neat and straightforward. I am wondering if you want to tackle it for another time without using the help from the L'Hôpital's rule, hehehe...

Why do you want to tie my hands like that? (Wasntme)
 
MarkFL said:
Why do you want to tie my hands like that? (Wasntme)

Because I would sing a song for you if you try that!:p
 
Solution without the use of L'Hôpital's rule:

Since $x^5+1<x(x+1)^4$ and $x^5<x^5+1$ for $x\ge 1$, we have

$\dfrac{1}{(x+1)^4}<\dfrac{x}{x^5+1}<\dfrac{1}{x^4}$ for $x\ge 1$

It then follows that

$\displaystyle k^3\int_{k}^{2k} \frac{1}{(x+1)^4}\,dx<k^3\int_{k}^{2k} \frac{x}{x^5+1}\,dx<k^3\int_{k}^{2k} \frac{1}{x^4}\,dx$ for every $k\ge 1$.

Now,

$\displaystyle \begin{align*} k^3\int_{k}^{2k} \frac{1}{(x+1)^4}\,dx&=\dfrac{k^3}{3}\left(\dfrac{1}{(k+1)^3}-\dfrac{1}{(2k+1)^3}\right)\\&=\dfrac{1}{3}\left(\left(\dfrac{k}{(k+1)}\right)^3-\left(\dfrac{k}{(2k+1)^3}\right)^3\right)\\&=\dfrac{1}{3}\left(1-\dfrac{1}{8}\right)\text{when $k$ approaches $\infty$}\\&=\dfrac{7}{24}\end{align*}$

and

$\displaystyle \begin{align*} k^3\int_{k}^{2k} \frac{1}{x^4}\,dx&=\dfrac{k^3}{3}\left(\dfrac{1}{k^3}-\dfrac{1}{(2k)^3}\right)\\&=\dfrac{1}{3}\left(1-\dfrac{1}{8}\right)\text{when $k$ approaches $\infty$}\\&=\dfrac{7}{24}\end{align*}$

It follows by the Squeeze principle that hence $$\lim_{{k}\to{\infty}} \int_{k}^{2k} \frac{k^3x}{x^5+1}\,dx=\dfrac{7}{24}$$.
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top